SUOJELUN KÄSIKIRJA
SUOJELUN KÄSIKIRJA
(Slukäsik)

1996

Maavoimapäällikkö
Kenraalimajuri

Juha Kainulainen

Pioneri- ja suojelutarkastaja
Eversti

Arto Mikkonen
SISÄLLYSLUETTELO

JOHDANTO

I LUKU RADIOAKTIIVINEN SÄTEILY, YDINRÄJÄHDE JA NIIDEN VAIKUTUKSET

1.1 Yleistä

1.2 Ydinfysiikan peruskäsitteitä

1.3 Radioaktiivinen hajoaminen

1.4 Eri sääteilylajien vuorovaikutuksista

1.5 Sääteilynlausimet

1.6 Ydinaseet ja ydinräjähde

1.6.1 Perusteita

1.6.2 Fissio

1.6.3 Fuusio

1.6.4 Ydinräjähdyksen energiajakautuma

1.6.5 Tulipallo ja radioaktiivinen pilvi

1.6.6 Paineaalto

1.6.7 Lämpösäteily

1.6.8 Radioaktiivinen säteily

1.6.9 Ionisaatioilmiöt

1.6.10 Sähkömagneettinen pulssi (EMP)

1.6.11 Muut ilmiöt

1.7 Sääteilyn vaikutus ihmiseen

1.7.1 Perusteita

1.7.2 Sääteilyn varhaisvaikutukset

1.7.3 Sääteilyn myöhäisvaikutukset

1.8 Rauhan ajan sääteilyonnettomuudet

1.8.1 Ydinnoumalonnettomuus

1.8.2 Onnettomuudet ydinkäytöössä aluksilla

1.8.3 Onnettomuudet käytetyn polttoaineen käsitelyssä

1.8.4 Onnettomuus käsiteltäessä ydinaseita

1.8.5 Muut onnettomuudet

1.9 Sääteilyn raja-arvot ja niiden ylittymisen aiheuttamat toimenpiteet
II LUKU BIOLOGINEN ASE

2.1 Yleistä
2.2 B-aseagenssit
2.3 Biologisen taisteluaineen levitys
2.4 Biologisen aseen vaikutus
2.5 B-aseen ilmiaisu ja suojaautuminen

III LUKU KEMIALLiset TAISTELUaineet

3.1 Kemiallisten taisteluaineiden määrittely
 3.1.1 Ärsyttävät aineet
 3.1.2 Tukahduttavat aineet
 3.1.3 Syövyttävät aineet
 3.1.4 Yleismyrkylliset taisteluaineet eli verikaasut
 3.1.5 Hermokaasut
 3.1.6 Kasvintuhoaineet (herbisidit)
 3.1.7 Toksiinit
 3.1.8 Psychotaisteluaineet
 3.1.9 Kemiallisten taisteluaineiden myrkyllisyys

3.2 Kemiallisten taisteluaineiden ilmiaisu
 3.2.1 Ilmaisuputket, -paperit ja -liuskat
 3.2.2 Automaattiset kaasunilmaisimet
 3.2.3 Kaukomonitorointi eli etämääräisyys
 3.2.4 Laboratoriiomenetelmät

3.3 Kemiallisten taisteluaineiden levittäminen ja
 leviäminen
 3.3.1 Taisteluaineiden levittäminen
 3.3.2 Leviämiseen vaikuttavat tekijät
 3.3.3 Leviämisen ennustaminen

3.4 Onnettomuudet kemian teollisuudessa ja kemiallisten
 aineiden kuljetuksissa
 3.4.1 Perusteita
 3.4.2 Onnettomuusriskit kemian teollisuudessa
 3.4.3 Onnettomuusriskit kemiallisten aineiden
 kuljetuksissa
 3.4.4 Tietoja eräistä kemikaaleista, niiden leviämisestä
 ja vaikutuksista
IV LUKU POLTTOASE JA TULIPALOT

4.1 Yleistä

4.2 Polttotaisteluaineet
 4.2.1 Maaöljypohjaiset polttotaisteluaineet
 4.2.2 Metalliset polttotaisteluaineet
 4.2.3 Itsestään syttyvät (pyroforiset) polttotaisteluaineet
 4.2.4 Itsestään palavat (pyrotekniset) polttotaisteluaineet

4.3 Polttotaisteluaineen levittämismenetelmät

4.4 Tulipalot ja niiden sammuttaminen
 4.4.1 Palaminen
 4.4.2 Sammuteet
 4.4.3 Huoneisto- ja metsäpalot

4.5 Polttotaisteluaineiden vaikutukset ja suojauminen niiltä

V LUKU SUOJAUMINEN ABC- JA POLTTOASEEN VAikutusSILTA

5.1 Yleistä

5.2 Yksilön suojaus
 5.2.1 Suojauksen periaatteet
 5.2.2 Henkilökohtaisten varusteiden antama suojaus
 5.2.3Varsinaiset suojavaarusteet
 Suojanaamari
 Suodatin
 Suojanaamarin käyttö ja huolto
 ABC-suojavaatetus
 Aktiivihiileen perustuvat suoja-asut
 Eristävät suoja-asut
 Kertakäyttöiset suoja-asut
 Käsien ja jalkojen suojaus

5.2.4 Varsinaiset paloasut
5.2.5 Paineilmahengityslaitteet
5.3 Joukkojen suojaaminen
5.3.1 Pika- ja kenttälinnoitteet
5.3.2 Rakennukset
5.3.3 Väestönsuojat
5.3.4 Kantalinnoitteet ja suojarakennukset
5.3.5 Panssaroidut ajoneuvot
5.3.6 Muut kollektiivisuojat

VI LUKU PUHDISTAMINEN

6.1 Puhdistamisen perusteet
6.1.1 Puhdistaminen säteilypölyystä
6.1.2 Puhdistaminen biologisista taisteluaineista
6.1.3 Puhdistaminen kemiallisista taisteluaineista

6.2 Henkilöpuhdistaminen
6.3 Varusteiden ja kaluston puhdistaminen
6.4 Maaston ja erityiskohtaiden puhdistaminen

VII LUKU SUOJELULÄÄKINTÄ

7.1 Säteilysairauksien ensiapu ja hoito
7.2 B-aseiden aiheuttamien sairauksien ensiapu ja hoito

7.3 Kemiallisten taisteluaineiden aiheuttamien vammojen ensiapu ja hoito
7.3.1 Hermokaasumyrkytys
7.3.2 Sinappikaasumyrkytys
7.3.3 Syaanivety
7.3.4 Fosgeenimyrkytys
7.3.5 Kyy nelkaasut

7.4 Palovammojen ensiapu ja hoito
LIITELUETTELO

Liite 1 Radioaktiivisuuden ja dosimetrian suureet 188
Liite 2 Säteilynlashkelevyn käyttöohje 191
Liite 3 Sanasto 195
Liite 4 Kirjallisuusluettelo 214
KUVALUETTELO

Kuva 1 Helium-atomi
Kuva 2 Natrium-atomin elektronikuorirakenne
Kuva 3 Ytimen sidosenergia yhtä nukleonia kohti massaluvun funktioina
Kuva 4 Säteilysuojelun kannalta merkittävimmät fotonien vuorovaikutukset
Kuva 5 R_{∞} vedessä fotonin energian funktioina
Kuva 6 Lyijyn massavaimennuskerroin ja sen eri komponentit energian funktioina
Kuva 7 235U:n kokonaisvaikutusala ja fissiovaikutusala
Kuva 8 Säteilymittareita
Kuva 9 Kanuunatyypin ydinräjähde
Kuva 10 Kokoonpuristamiseen perustuva ydinräjähde
Kuva 11 Lämpöydinräjähde
Kuva 12 Esimerkkejä ydinaseista
Kuva 13 Tavanomaisen ja neutroniräjähteen energoiden jakautuminen ja vaikutusten ulottuvuus
Kuva 14 Eri energiamuotojen suhteellisen intensiteetin ajallinen käyttäytyminen
Kuva 15 Tulipallon lämpötilan ajallinen käyttäytyminen
Kuva 16 Tulipallon säde eri räjähdyssvoimakkuuksilla
Kuva 17 Radioaktiivisen räjähdynspilven sisäiset virtaukset
Kuva 18 Radioaktiivisen pilven nousunopeus
<table>
<thead>
<tr>
<th>Kuva 19</th>
<th>Radioaktiivisen pilven mittasuhteet</th>
<th>44</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kuva 20</td>
<td>Paineaallon aiheuttama paineen vaihtelu</td>
<td>45</td>
</tr>
<tr>
<td>Kuva 21</td>
<td>1 kt:n ilmaräjähteen aiheuttama staattinen ylipaine eri etäisyyksillä</td>
<td>46</td>
</tr>
<tr>
<td>Kuva 22</td>
<td>Staattisen paineen arvoja vastaava dynaaminen paine sekä paineiskun ja tuulen nopeudet</td>
<td>46</td>
</tr>
<tr>
<td>Kuva 23</td>
<td>Ylipaineen ulottuvuus ilmaräjähdyksessä</td>
<td>47</td>
</tr>
<tr>
<td>Kuva 24</td>
<td>Keskimääräinen ydinräjähdyksen paineallas ylipaineaallon aiheuttama vammoittumisetäisyys ihmiselle</td>
<td>47</td>
</tr>
<tr>
<td>Kuva 25</td>
<td>Metsätuhot</td>
<td>48</td>
</tr>
<tr>
<td>Kuva 26</td>
<td>Ylipaineen aiheuttamat vauriot rakennuksille</td>
<td>48</td>
</tr>
<tr>
<td>Kuva 27</td>
<td>Ylipaineen aiheuttamia kalustovaurioita</td>
<td>49</td>
</tr>
<tr>
<td>Kuva 28</td>
<td>Lämpösäteilyn ulottuvuus</td>
<td>50</td>
</tr>
<tr>
<td>Kuva 29</td>
<td>Palovammojen syntyminen</td>
<td>51</td>
</tr>
<tr>
<td>Kuva 30</td>
<td>Havumetsän syttyminen</td>
<td>51</td>
</tr>
<tr>
<td>Kuva 31</td>
<td>Alkusäteilyannos matalissa ilmaräjähteissä</td>
<td>53</td>
</tr>
<tr>
<td>Kuva 32</td>
<td>Gammäsäteilyyn vaimennimen eri väliaineissa</td>
<td>53</td>
</tr>
<tr>
<td>Kuva 33</td>
<td>Neutronisäteilyyn vaimennimen eri väliaineissa</td>
<td>54</td>
</tr>
<tr>
<td>Kuva 34</td>
<td>Eri kokoisten hiukkasten putoamisajat ja niiden osuudet kokonaisaktiivisuudesta</td>
<td>56</td>
</tr>
<tr>
<td>Kuva 35</td>
<td>Laskeuma-alue ja kokonaisannoskäyrät kolmella eri ajanhetkellä</td>
<td>57</td>
</tr>
<tr>
<td>Kuva 36</td>
<td>15 Mt:n räjähdeestä syntyneen laskeuman muoto ja kokonaisannoskäyrät</td>
<td>58</td>
</tr>
</tbody>
</table>
Kuva 37 EMP:n vaikutusalue 100 km ja 400 km korkeuksilla suoritetuissa räjäytyksissä 60
Kuva 38 Ionisaatioalueen muodon riippuvuus räjäytykskorkeudesta 61
Kuva 39 Sähkö- ja magneettikentän huippuarvot räjäytykskorkeuden funktiona 62
Kuva 40 Säteilylähteen koskettamisen aiheuttama ihovamma 66
Kuva 41 Äkillisesti saadun säteilyannoksen aiheuttamia terveyshaittoja 67
Kuva 42 Säteilyn raja-arvot ja ylittämisestä aiheutuvat toimenpiteet 72
Kuva 43 Elintarvikeiden nauttimista rajoittavat aktiivisuusarvot 74
Kuva 44 B-aseeksi soveltuvia bakteereja 76
Kuva 45 B-aseeksi soveltuvia toksiineja 77
Kuva 46 Eräiden b-agenssien ominaisuuksia 79
Kuva 47 Kemiallisten taisteluaineiden ryhmittely 83
Kuva 48 Ärsyttävien taisteluaineiden ominaisuuksia 85
Kuva 49 Tukahduuttavien taistelukaasujen ominaisuuksia 86
Kuva 50 Syövyttävien taistelukaasujen ominaisuuksia 86
Kuva 51 Sinappikaasun aiheuttamia ihovammoja 87
Kuva 52 Hermokaasujen fysikaalisia ja kemiallisia ominaisuuksia 90
Kuva 53 Hermokaasujen vaikutusmekanismi 91
Kuva 54 Kemiallisten taisteluaineiden myrkyllisyys 94
Kuva 55 Hermo- ja sinappikaasun sekä yleismyrkyllisten kaasujen ilmaisaluputket 96
Kuva 56 Hermo- ja yleismyrkyllisten kaasujen ilmaisalusiskat 96
Kuva 76 Karkea ennustusmenetelmä vaarallisten aineiden leviämiseksi 115
Kuva 77 Ammoniakin leviäminen ilmassa 116
Kuva 78 Kloorin leviäminen ilmassa 116
Kuva 79 Nestekaasurajähdysken syntyminen 118
Kuva 80 Tietoja napalmeista ja pyrogeeleista 122
Kuva 81 Tietoja metallisista polttotaisteluaineista 123
Kuva 82 Tietoja itsestään syttyvistä polttotaisteluaineista 126
Kuva 83 Tietoja itsestään palavista polttotaisteluaineista 128
Kuva 84 Napalm-hyökkäys 129
Kuva 85 Halkileikkaus tykistön kuorma-ammuksesta 130
Kuva 86 Tietoja liekinheittimistä 131
Kuva 87 Huoneistopalon kehittyminen 136
Kuva 88 Maastopalon etenemistavat 137
Kuva 89 Suojanaamari M-95 ja hengitysilman kulku suojanaamarissa 142
Kuva 90 ABC-suodattimen rakenne 143
Kuva 91 Aerosolisuodattimen rakenne 144
Kuva 92 Pallohiilikankaan rakenne 148
Kuva 93 Ihon ABC-suojaus aktiivihiiliväliasun avulla 149
Kuva 94 Paineilmahengityslaitteisto 152
Kuva 95 Poteron antama suojau alkusäteilyä vastaan 153
Kuva 96 Gammasäteilyn puoliintumispaksuudet alku- ja jälkisäteilylle 154
Kuva 97 Rakennusten vaimennuskertoimet laskeumutilanteessa 156
Kuva 98 Jokamiehen pölynsuodatin
Kuva 99 VSS-suodatin
Kuva 100 Suodatinhiilen kostuminen
Kuva 101 Esimerkki taistelupanssarivaunun suojelujärjestelmästä
Kuva 102 ABC-radiaalisuodatin
Kuva 103 ABC-suojattu huonetila
Kuva 104 Eräiden fysikaalisten puhdistusmenetelmien vaikutus mikrobeihin
Kuva 105 Eräiden puhdistuskemikaalien tehokkuus mikrobien torjunnassa
Kuva 106 Taisteluaineiden liukenevuus eri liuottimiin
Kuva 107 Kemialliseen puhdistukseen soveltuvia kemikaaleja ja niiden ominaisuuksia
Kuva 108 Mikroreitit taisteluaineiden imetyymiselle sarveiskerroksen läpi kohti verenkiertoa
Kuva 109 Ihonpuhdistukseen soveltuvat puhdistuspulverit ja niiden ominaisuuDET
Kuva 110 Liuotinaineen levittäminen
Kuva 111 Puhdistusajoneuvo
Kuva 112 Suojasuhkut toiminnassa
Kuva 113 Tärkeimmät B-asetorjunnassa käytettävät lääkkeet
Kuva 114 Hermokaasumyrkkyksen kliininen kuva
Kuva 115 Vastalääkkeenantolaitte
Kuva 116 Palovammojen laajuuden arviointi
Kuva 117 Hoitotoimenpiteet joukkosidontapaikalla
JOHDANTO

Taisteluaineita ei läheskään aina voida havaita aistimalla. Mittari tai hälytys voi olla ainoa keino paljastaa niiden olemassaoloa. Monet taisteluaineet vaikuttavat viiveellä, joten altistuminen on jo tapahtunut, kun ensimmäiset oireet ilmenevät.

Jokaisen taistelijan on tunnattava ABC- ja polttoaseiden vaikutukset ja kyettävä täyttämään omat tehtävänä myös suojaravustuksessa. Johtajien on osattava kouluttaa ja johtaa joukkokohtaiset suojelemavointiteet sekä hallittava taistelujohtaminen myös ABC- ja polttoaseiden uhan vallitessa ja niiden käytön aikana.

Suojelun Käsikirjaa on koottu perustiedot ABC- ja polttoaseista sekä niiden vaikutuksista ihmiseen, materiaaliin ja luontoon. Kirja sisältää tietoa suojaravustuiden ja -välineiden sekä ajoneuvojen ja muiden suojien antamasta suojaasta, ensiapu- ja hoitotoimenpiteistä, tulipalojen sammuttamisesta sekä taisteluaineiden puhdistamiseen soveltuvista aineista, välineistä ja menetelmistä. Asioita on käsiteltä teknisestä ja osittain myös tieteellisestä näkökulmasta. Tieteellisyyys on kuitenkin pyritty esit-
tämään mahdollisimman pelkistetysti. Toimintaohjeiden ja -mallien antamista on vältetty, jotta kirjasta ei olisi tullut liian laajaa.

Kirja on tarkoitettu ensisijaisesti suojelu- ja pelastusalan kouluttajille sekä suojelu- tehtäviin koulutettaville reserviläisille. Sitä voidaan käyttää oppikirjana myös henkilökunnan kursseilla.

Suojelun Käsikirja on perusteos. Sitä täydentävät valmiit (Suojelumies, Suojelupäätöskirja, koulutusopas) ja lähivuosina valmistuvat (Suojelu- ja pelastustoimintaopas, Suojeluhuolto-opas, Laboratorioinioimintaopas, Suojelu- komppanian opas) oppaat sekä alan koulutusohjeet, joissa annetaan yksityiskohtaisia toimintamalleja ja menettelyohjeita.

Tämä käsikirja korvaa vuodelta 1980 olevan Suojelun Käsikirjan.
I LUKU
RAYIOAKTIIVINEN SÄTEILY, YDINRÄJÄHDE JA NIIDEN VAikutukset

1.1 YLEISTÄ

Radioaktiivisen säteilyn ja sen vaikutusten ymmärtämiseksi on tunnettava ydinfysiikan peruskäsitteet, radioaktiivinen hajoaminen sekä säteilyn vuorovaikutukset ihmisen ja materiaalin kanssa. Perusasioiden tunteminen tuo pohjan myös ydinräähteen toimintaperiaatteet ja vaikutusten ymmärtämiselle. Rauhan aikana käytettävä ydinenergia saattaa aiheuttaa sääteilyonnettomuksia, joiden vaikutukset ovat verrattavissa ydinaseen aiheuttamaan radioaktiiviseen säteilyyn. Ydinfysiikassa tavallisimmin käytettävät radioaktiivisuuden ja dosimetrian suureet on koottu liitteeseen 1.

1.2 YDINFYSIIKAN PERUSKÄSTETTEITÄ

Ydinreaktioiden ja radioaktiivisten ydinten hajoamisen yhteydessä syntyy ionisoivaa sääteilyä. Tämän sääteilyn ja aineen väliset fysikaaliset vuorovaikutukset saavat elollisessa kudoksessa aikaan kemiallisia muutoksia, jotka ilmenevät sääteilyn biologisina haittavaikutuksina. Myös sääteilyn havaitseminen ja vaimeneminen väliaineessa sekä sääteilyn hyötykäyttö perustuvat sääteilyn ja aineen välisiin vuorovaikutuksiin.

Ionisoiva sääteily on joko sähkömagneettista sääteilyä, kuten gamma- ja röntgensääteilyä, tai hiukkassääteilyä, kuten "He-atomin ytimistä koostuva alfasääteily, elektroneista tai positroneista koostuva beetasääteily sekä neutronisääteily.

KUVA 1 Helium-atomi

KUVA 2 Natrium-atomin elektronikuorirakenne

Ytimen neutronien lukumäärää N sanotaan neutroniluvuksi ja nukleonien kokonaismäärää

$$A = Z + N$$

nukleoni- eli **massaluvuksi**. Nuklidi on atomityyppi, jolla on tietty järjestys- ja massaluku. Saman alkuanneen atomeja, joilla on eri massaluku, sanotaan
isotoopeiksi. Alkualueen eri isotoopien kemiallisessa käyttäytymisessä on eroja erittäin harvoin, niiden ydinfysikaaliset ominaisuudet sitävästoin voivat poiketa merkittävästi toisistaan.

Nuklideja merkitään siten, että alkualueen kemiallisena symbolina liitetään massa-luku. Esimerkiksi hiilen isotoopian 12 merkkinä on ^{12}C. Protonien lukumäärä voidaan merkitä selvyyden vuoksi massaluvun alle, esimerkiksi $^{12}_6\text{C}$.

Aatomin massan (atomimassan) yksikköä käytetään usein ns. atomimassayksikköä u, joka määritellä Tämän yksikön suuruus $1,6606 \times 10^{-27}$ kg on suunnilleen sama kuin yhden nukleonin massa.

$$1\ u = \frac{1}{12} \times 12\ \text{C} \ -\text{atomimassa}$$

Aatomien ja ytimien koot ovat käsittäinä epämääriä ja ne voidaan määritellä eri tavoin. Ytimen säde on noin 10^{-15} m, joka puolestaan on noin sadastuhannesosa aatomin säteestä.

Ytimen stabiilisuutta kuvaa sen sidosenergia Q eli se energia, joka tarvitaan erottamaan perustilassa olevan ytimen nukleonit niin kauas toisistaan, että niiden väliset vuorovaikutukset ovat merkityksettömiä. Sidosenergian yksikkönä käytetään yleensä elektronivoltia (eV), joka määritellään

$$1\ eV = 1,6022 \times 10^{-19}\ J.$$

Elektronin kiihtyessä tyhjiössä yhden voltin potentiaalieron yli sen liike-energia muuttuu yhden elektronivoltin verran.

Tavallisesti käytettyjä sidosenergian yksikköitä ovat kiloelektronivoltti, keV = 1000 eV, megaelektronivoltti, MeV = 10^6 eV ja gigaelektronivoltti, GeV = 10^9 eV.

HUOMAA: \[\Delta E_{B_1} > \Delta E_{B_2} \]

KUVA 3
Ytimen sidosenergia yhtä nukleonia kohti massaluvin funktiona

Lepomassaa vastaavat energiat ovat sidosenergiaa huomattavasti suurempia, esimerkiksi protonin lepomassaa vastaava energia on 938,3 MeV.

Perustilan lisäksi ytimellä on viritystiloja samaan tapaan kuin atomilla. Ydin voi ottaa vastaan ja luovuttaa vain kahden energiatilan erotusta vastaavia energiamääriä.

Sidotumpaan viritystilaan tai perustilaan siirtyvän ydin lähettää sähkömagneettista säteilyä. Joissakin tapauksissa hiukkasemissio voi välittää siirtymän. Siirtymää viritystilasta sidotumpaan ("Alempaan") energiatilaan sanotaan viritystilan laukamiseksi, transitioksi tai yksinkertaisesti hajoamiseksi. Sähkömagneettinen säteily koostuu erilisistä energiakvantteista, fotoneista. Sähkömagneettista säteilyä, joka on peräisin atomiytimen energiatilan muutoksista, sanotaan gammasäteilyksi. Transition alku- ja lopputilan energioiden erotus \(E_\gamma \), kvantin energia on

\[E_\gamma = E_1 - E_2 \]

Nukleonien käyttäytymisen määrää niiden välinen vahva vuorovaikutus eli ydinvoima ja protonien välinen sähköstaattinen Coulombin voima.
1.3 RADIOAKTIIVINEN HAJOAMINEN

Alfahajoamisen on yleistä raskailla nuklideilla. Alfahajoamisessa ytimestä lähtee kahden protonin ja kahden neutronin muodostama \(^{\alpha} \)-hiukkanen, joka on \(^{4}\)He-atomin ydin. Hajoamisen tuloksena syntyy tätä ydin saattaa olla virittynyt, jolloin sen lauetessa syntyy sähkömagneettista säteilyä. Hajoamisessa syntyvien \(^{\alpha} \)-hiukkasten energia on muutamia megaelektronivoltteja.

Beetahajoamisessa ydin siirtyy alempana energiatalon siten, että ytimen varaus muuttuu, mutta massaluoksa ei muutu. Tämä voi spontaanisti tapahtua kolmella tavalla. \(^{\beta^-} \)-hajoamisessa yksi ytimen neutroni hajoaa protoniksi ja elektroniksi. Protoni jää ytimeen, elektroni eli \(^{\beta^-} \)-hiukkanen sitävastoin sinkoutuu ulos \(^{\beta^-} \)-säteilyynä. \(^{\beta^+} \)-hajoamisessa yksi ytimen protoneista hajoaa neutroniksi ja positirotioni eli \(^{\beta^+} \)-hiukkaskeksi. Hajoamisen yhteydessä esiintyy myös sähkömagneettista annihilationisäteilyä, kun positirotioni törmäävät elektroneihin. \(^{\beta^+} \)-hajoamisen kansa vaihtoehtoinen prosessi on elektronikaappaus, jossa ydin sieppaa atomin elektroniverhosta yhden elektronin.

Beetasäteilyllä on jatkuva energiaspektri eli ytimestä lähtevien -hiukkasten energioilla on kaikki mahdolliset arvot nollan ja kyseiselle ytimelle ominaisen maksimienergian välillä.

1.4 ERI SÄTEILYLAJIEN VUOROVAIKUTUKSISTA

Varauksiset hiukkaset, alfa, protoni ja elektroni ovat suoraan eli välittömästi ionisoivaa säteilyä. Gamma- ja neutronisäteily sitävastoin ovat epäsuorasti eli välillisesti ionisoivaa säteilyä. Tämän säteilyn vaikutuksesta syntyy ionisoivia hiukasasia, jotka puolestaan aiheuttavat varsinaisen säteilyvaurion aineessa.

Alfasäteily on tiheään ionisoivaa säteilyä. Koska alfa-hiukkasen massa on yli 7000 kertaa elektronin massa, se kulkee aineessa suoraviivaisesti. Törmätestään aineen elektroneihin hiukanen menettää nopeasti energiaansa, samalla törmäysken kohteen olevan ytimen energiatila muuttuu. Hiukkanen hidastuu nopeasti ja sen kantama jää lyhyeksi. Väliaineatomen kanssa tapahtuu törmäyksiä vasta jarruuntuun misen loppuvaiheessa, jolloin hiukanen on menettänyt suuren osan energiastaan ja jolloin sen nopeus on pieni. Alfa-hiukkasen kantama ilmassa on muutamia senttimetrejä ja kiinteässä väliaineessa millimetrin sadasosia.

Beetasäteily on selvästi harvemmin ionisoivaa kuin alfasäteilyä. Koska beta-hiukkasten (elektroni tai positiioni) massa on yhtä suuri tai paljon pienempi kuin törmäyksen kohteen olevan elektronin tai atomin massa, ne menettävät energiaansa pääasiassa sirotessaan epäelastisesti aineen elektroneista ja ytimistä. Beetahiukanen voi menettää koko energian jopa yhdessä törmäyksessä, jolloin synty suurenergistä jarrutussäteilyä. Beetasäteilyyn kantama on ilmassa muutamia meterejä ja kudoksessa muutamia millimetrejä.

Sähkömagneettinen säteily (gamma- ja röntgensäteily) on epäsuorasti ionisoivaa säteilyä. Sen vuorovaikutus aineen kanssa tuottaa ionisoivia hiukkasia. Sähkömagneettinen säteily voi olla vuorovaikutuksessa myös sähkömagneettisen kentän kanssa. Vauravaihdon voi olla absorptio, elastinen sironta tai epäelastinen sironta.

FOTONIN VUOROVAIKUTUS AINEEN KANSSA

Klassinen sirotta

Fotosähköilmiössä

Comptonin ilmiö

Parinmuodostus

Fotoydinreaktio

KUVA 4 Säteilysuojelun kannalta merkittävimmät fotonien vuorovaikutukset

Klassinen sirotta on fotonin elastista sirottaa lujasti sitoutuneesta elektronista. Sironnassa koko atomi ottaa vastaan rekyylieveran eikä fotonin energia merkitävästi muutu. Tällä sirotalla on merkitystä vain silloin, kun fotonin energia on pieni.

Fotosähköilmiössä fotonii luovuttaa koko energiansa atomin elektronille, joka sinkoutuu ulos atomista ja saa liike-energiakseen fotonin energian vähennettynä elektronin sidosenergialla.

Comptonin ilmiössä fotonii siroaa lähinnä sitoutuneesta (sidosenergia < fotonin energia) elektronista. Fotonin menettämä energia siirtyy sellaisenaan elektronin liike-energiaksi.

Parinmuodostus on kysymyksessä silloin, kun ytimen voimakenttään joutunut fotonii hääviää ja sen energiasta syntyy elektroni ja positroni. Ilimiön edellytyksenä on, että fotonin energia on yli 1,022 MeV (= 2 m_e C^2). Elektroni ja postironii saavat liike-energian, jonka suuruus on

E_y -2m_eC^2

missä C on valon nopeus tyhjiössä eli 3,0 x 10^8 m/s.

Fotoydinreaktio voi tapahtua silloin, kun fotonin energia on niin suuri, että se absorboituessaan ytimeen aiheuttaa nukleonin irtomisen. Fotoydinreaktioilla
on nukleonin sidosenergiasta johtuva kynnysenergia, joka useimmilla teknisesti tärkeillä aineilla on 10 - 15 MeV. Berylliumissa reaktio voi tapahtua jo 1.67 MeV:n energialla, joten sitä voidaan käyttää neutronilähteenä yhdessä jonkin sopivan gamma-aktiivisen nuklidin kanssa.

Fotonien matkavaimennuskerroin on verrannollinen vuorovaikutusten todennäköisyyteen. Kokonaisvaimennuskerroin \(\mu \) on eri tapahtumien makrovaikutusalojen summa

\[
\mu = \mu_f + \mu_c + \mu_p \text{[m}^{-1}\text{]}]
\]

jossa alaindeksi \(f \) tarkoittaa fotosähköilmioitä, \(c \) Comptonin sironaa ja \(p \) parinmuodostusta.

Fotonivirtasuhteen \(\varphi \), vaimenemisen ainesvyvydellä \(x \) voi laskea kaavasta

\[
\varphi (x) = \varphi_0 e^{-\mu x}
\]

jossa \(\varphi_0 \) on tulevan fotonivirran tiheys.

Kuvassa 5 on esitetty fotonin energian funktio hahmossa. Kuvan ympäröivän pallon säde, jonka sisällä 90 % lähteen sateilyenergiasta absorboituu. Kuvan antaa käsityksen siitä, millaisella matkalla eri energian omaavat fotonit absorboituvat veneen, jonka tiheys on likipitäen sama kuin ihmisen tiheys.

KUVA 5 \(R_{90} \) vedessä fotonin energian funktio
Sähkömagneettisen säteilyn ja aineen vuorovaikutuksissa energiaa absorboituu, siroa ja muuttuu häviämissäteilyksi. Edellä esitetyt vaimenemiskertoimet kuvaavat vain alkuperäisen fotonisuuksen vaimennemista. Niissä ei ole otettu huomioon sekundäärisäteilyä, jonka energia- ja suuntajakaumat ovat erilaisia kuin alkuperäisessä fotonisuuksissa.

Neutronien ja ytimien vuorovaikutukset riippuvat voimakkaasti neutronien energiasta. Neutronit voidaan luokitella liike-energiansa perusteella erittäin nopeisiin (liike-energia yli 20 MeV), nopeisiin (0.1 MeV - 20 MeV), keskinopeisiin (1 keV - 100 keV), hitaisiin (alle 1 keV) ja termisiin neutronihihin (0.005 eV - 0.1 eV).

Energiaalueista käytetään myös muita nimityksiä mm. sen mukaan, millainen merkitys kyseisellä energialla on eri reaktiotyppeihin. Esimerkiksi **resonanssi-alueella** tarkoitetaan energiaväläitä 0.5 eV - 3000 eV, jolla useat tärkeät nuklidit saavat aikaan ytimen virittymisen tiettyyn energiatilaan. **Kokonaisvaikutusala** (b, barn = 10^{-28}m²) tarkoittaa kaikkien ydinreaktioiden yhteenlaskettua todennäköisyttä.

KUVA 7 $^{235}\text{U}:\text{n kokonaisvaikutusala ja fissionvaikutusala}$
1.5 SÄTEILYILMAISIMET

Verrannollisuuksilaskurissa säteilyn synnyttämien ioniparien määrää vahvistetaan kasvattamalla ionena keräävä sähkökenttä. Sopivissa olosuhteissa ionisaation määrä pysyy verrannollisena säteilyn aiheuttamien ionien määrään, mutta ionien kokonaismäärä voi kasvaa monituhatkertaiseksi. Tämä ilmaisimen varausvahvistus-ominaisuus (ns. kaasuvahvistus) vähentää ulkoisen esivahvistimen käyttötarvetta ja voi oleellisesti parantaa signaalikohtoja suhdetta verrattuna ionisaatiokammioihin.

Geigerputken pulssi koostuu noin 10^8-1010 ioniparista, jotka muodostuvat purkauksessa. Ulostulopulssi on muutamia volteja, joten ilmaineessa käytetävää elektronikkaa voidaan yksinkertaistaa esimerkiksi jättämällä esivahvistin pois.

KUVA 8 Säteilymittareita, vasmalla RD-10, keskellä RDS-100 ja oikealla RDS-120

Tuikelaskennan käyttö säteilyn havaitsemisessa ja spektroskopiasa olisi mahdotonta, ellei olisi laitteita, jotka pystyvät muuttamaan tukeaineessa syntyvää etsisää valopulssia sähköisiksi signaleiksi.

Valomonistinputki pystyy antamaan käyttökelpoisen jännitepulssin muuttamaan fotonin valopulssista. Puolijohdefotodioiden kehityksestä huolimatta se on edelleenkin säilyttänyt aseman.

Perinteiset puolijohdefotodiidot muuntavat valoa elektroni-aukkopareiksi, jotka kerätään ulkoiselle vahvistimelle. Vyrofotodiodeissa varausenkuljettajien määrä kasvataetaan sähkökentän avulla. Fotodioiden etuja verrattuna valomonistinputkiin ovat parempia tehokkuus fotonien muuttamisessa varauksesii, pienempi tehonkulutus ja koko sekä parempi mikaaninen kestävyys.

Pii on käytetyn puolijohdemateriaali varattujen hiukkasten spektroskopiasa. Germaniumia käytetään gammafotonien mittauksissa.
Gammasäteilyä lähettävät radioaktiiviset aineet pystytään tunnistamaan niiden lähettämän säteilyn energian perusteella.

Neutronit havaitaan niiden ydinreakkioissa aikaansaamien varattujen hiukkasten, protonien ja alfahiukkasten, avulla. Kaikissa neutroni-ilmaisimissa on kohtiomateriaali, jossa ydinreaktiot tapahtuvat, ja ilmaisinosaa, jolla varatut hiukkaset havaitaan.

Hitaat neutronit, joiden energia on yleensä alle 0,5 eV, havaitaan esimerkiksi niiden boorissa (10B) tai litiumissa (6Li) aikaansaamien alfa-hiukkasten perusteella.

Kun neutronin energia kasvaa, todennäköisyys neutronin ja ilmaisaineen väliselle vuorovaikutukselle pienenee. **Nopeat neutronit** voidaan havaita suhteellisen helposti esimerkiksi neutronin ja vety-tyimen eli protonin välisissä törmäyksissä syntyvien rekyylipronoinen perusteella. Rekyylipronoinen energia on verrallollinen törmäävän nopean neutronin energiaan, joten menetelmällä on mahdollista mitata myös neutronin energia. Kyseistä nopeiden neutronien havainnointia ja niiden energian mittausta kutsutaan **nopeiden neutronien spektroskopiaksi**. Joissakin tapauksissa riittää neutronien pelkkä havaitseminen, jolloin voidaan käyttää **nopeiden neutronien laskimia**.

1.6 YDINASEET JA YDINRÄJÄHDE

1.6.1 Perusteita

Ydinaseet jaetaan ampumaetäisyyden ja käyttötarkoituksen perusteella taktisiin, operatiivisiin ja strategisiin ydinaseisiin. **Taktisten** ydinräähhteen ampumaetäisyys on muutamasta kilometristä tuhanteen kilometriin ja teho kilotonneista kymmeniin kilotonneihin. **Operatiivisten** ydinaseiden kantama on 1000-6000 km. Ne voivat sisältää useita ydinkärkiä, jolloin kokonaisteho voi nousta satoihin kilotonneihin. **Strategisten** ydinaseiden ampumaetäisyydet ovat tuhansa kilometrejä. Niihin on yleensä sijoitettu useita ydinkärkiä, jolloin kokonaisteho nousee satoihin kilotonneihin, jopa megatonneihin.

1.6.2 Fissio

Tärkeimmät halkeavat ytimet ovat uraani 233 (233U), uraani 235 (235U) ja plutonium 239 (239Pu), joista ainoastaan 235U esiintyy luonnossa (n 0.71 % luonnonuraanista).

Muissa ytimissä nollaenergian neutroni ei yleensä saa aikaan fissiota, vaan tulevalla neutronilla on oltava energiaa fissiion induosimiseksi. Jos tämän energian määrä on alle 10 MeV, kutsutaan lähtöydintä halkeamiskelpoiseksi. Tärkein halkeamiskelpoinen ydin on 238U, joka on luonnonuraanin tärkein osa. Tämän ytimen halkeamiseen tarvittava kynnysenergia on 0,6 MeV.

KUVA 9 Kanuunatyypinen ydinräjähde

KUVA 10 Kokoonpuristamiseen perustava ydinräjähde

Pu 239:n fissiossa vapautuu useampia neutroneja kuin uraani 235:n fissioituessa. Plutoniumin kriittinen massa on 6,0 kg, jolloin plutoniumpallon säde on 90 mm. Mikäli plutonium puristetaan kaksinkertaiseen tiheyteen, kriittinen massa on vain 1,5 kg.

Jos räjähteen teho halutaan kasvattaa siten, että se vastaa satoja kilotonneja TNT:tä, pitää ammuksessa olla useita kiloja fissioituvaa ainetta. Tämä on mahdollista siten, että alkutilanteessa aine on onton pallon muotoisena, joka puristuessaan ko- koon muuttuu yhtenäiseksi, tiheäksi ylikriittiseksi palloksi.

1.6.3 Fuusio

Uraanin rikastaminen tai plutoniumin valmistus ja erottaminen on hyvin kallista Suuritehoinen ydinräjähde saadaan aikaan paljon halvemmalla, kun käytetään hyväksi fuusiota.

Helpommin fuusio saadaan tapahtumaan vedyn kahden isotoopin, deuteriumin (D = 2, H) ja tritiumin (T = 3, H) välillä.

\[D + T \rightarrow ^{4}He + n + 17,6 \text{ MeV} \]

Deuteriumia eli raskasta vetyä on luonnossa noin 0.015 % kaikesta vedystä. Tritiumin puoliintumisaika on vain noin 12 vuotta, joten luonnossa sitä on verraten
vähän. Tritiumia voidaan kuitenkin valmistaa keinotekoisesti esimerkiksi alla-
esitetyn reaktion avulla, jossa syntyy myös energiaa.

\[^{6}\text{Li} + \text{n} \rightarrow ^{4}\text{He} + \text{T} + 4.7 \text{MeV} \]

Fuusioreaktiot eivät tapahdu spontaanisti. Tämä johtuu siitä, että ytimien välillä on sähköstaattinen poistovoima, joka on ylittävä ennen kuin lyhytkantamaiset ydinvoimat pääsevät vaikuttamaan ja vetävät fuusioituvat osat yhteen. Deuteriumin ja tritiumin fuusio on todennäköinen vasta, kun törmäävien hiukkasten suhteellinen hiike-energia on 10 - 100 keV.

Fissioräjähdeen tehoa voidaan parantaa merkittävästi, jos se sisältää pienen mää-
rän fuusipolttoainetta. Itse fuusipolttoaine ei tuota kovinkaan paljon lisäenergiaa. Sen sijaan fuusioista syntyvät korkeanenergiset neutronit nopeuttavat ketjureaktiota, jolloin ehtii tapahtua normaalia paljon suurempi määrä fissiorreaktioita ennen, kuin polttoaine laajenee alikriittiseksi. Menetelmästä käytetään nimitystä tehos-
tettu fissioräjähde.

Korkean tuoton räjähteessä fuusioreaktio käynnistetään fissiosytyttimellä, jol-
loin suurin osa energiasta syntyy fuusion tuloksena. Puhtaan fuusioräjähteen hinta

Halvempi ratkaisu on käyttää köyhdytetystä uraanista valmistettua heijastinkerrosta lämpöydinräjähteen ympärillä. Köyhdytetty uraan ei halkea fissiosytyttimestä tullevista neutroneista. Vasta fuusioreaktioista vapautuvat suurienenergiset neutronit aiheuttavat sen fissioitumisen. Useimmat korkean tuoton räjähteet ovat tätä tyyp-
piä. Vaikka näitä kutsutaankin lämpöydinaseiksi tai vetypommeiksi, noin puolet energiantuotosta syntyy neutroniheijastimessa tapahtuvista fissioista. Kuvassa 11 esitetyn lämpöydinräjähteen rakennetta voidaan vielä parantaa vaihtamalla fissiosytyttimen ja fuusiomateriaalin paikkoja, jolloin fissiosta vapautuvalla ener-
gialla puristetaan fuusioituvaa ainetta ja samalla kasvatetaan lämpöydinreaktion nopeutta sekä tehokkuutta.
KUVA 11 Lämpöydinräjähde

On myös mahdollista valmistaa suhteellisen pieniheisen räjähde, jossa pienellä fissionsytyttimellä käynnistetään fuusioreaktio. Jos räjähteen rakenne on sellainen, että ydinreaktiot tapahtuvat mahdollisimman nopeasti, heijastimen ei tarvitse olla paksu. Tällöin suuri osa energetteisistä neutroneista pääsee karkuun, mikä lisää räjähteestä lähtevän neutronisäteilyn määrää, paine- ja lämpövaikutukset sitä vastoin ovat pienemmät verrattuna säteilyominaisuksiltaan samanteoiseen tavanomaiseen fissioräjähteeseen. Tällaisia tehostetun säteilyn aseita kutsutaan neutronipommeiksi.

Yhteenvetona ydinräjähteiden kehykset voidaan todeta, että Hiroshimassa käytetty kanunatypininen räjähde sisälsi noin 42 kg uraania (80% 235U). Räjähteen pituus oli 3,2 metriä, halkaisija 0,75 metriä ja paino 4,4 tonnia. Sen teho oli vain 12,5 kt eli alle 2 prosenttia teoreettisesta tehosta.

Nagasakin ydinpommi edusti kokoonpuristamistekniikan ensimmäistä sukupolven. Sen teho oli 20 kt. Pallonmuotoisessa räjähteessä oli kaikkiaan 96 kemiallista räjähdyssaineenpusta, jotka syttyttiin 32 eri kohdasta ja joiden yhteispaino oli 2 tonnia. Nykyteknikalla valmistettu 1 kt:n ydinräjähde voidaan sijoittaa 155 mm tykin kranaattiin. Suurimman fissioräjähteen teho on ollut 500 kt.

Kuvassa 12 on esimerkkejä ydinaseiden maaliinsaattamisjärjestelmistä. Ylimpänä strateginen ydinohjus SS-25, jonka kantama on yli 10 000 km ja ydinlaukauksen teho 550 kt, keskellä ilmasta ammattava risteilyohjus AGM-86-ALCM, jonka kantama on noin 2500 km ja laatuksen teho 200 kt, alimpana sukellusveneestä ammattava strateginen ohjus SS-N-23, jonka laatuksen teho voi olla satoja kilotonneja lentoradan korkeudesta riippuen.

KUVA 12 Esimerkkejä ydinaseista
1.6.4 Ydinräjähdyksen energiakatkousta

Ydinräjähdyksessä vapautuva energia vaikuttaa ympäristöön lämpöä teileynä, painealtona, ydinsäteilynä, ionisaationa ja sähkömagneettisena pulssina. Kaksi viimeinämittaa eivät ole peräisin itse pommista, vaan ne syntyvät ydinräjähdyksen ja ilmakehän vuorovaikutusten seurauksena.

Ydinräjähdykset voidaan jakaa räjäytyskorkeuden mukaan ilma-, pinta- ja syvyytteitä vedessä tapahtuvien räjähdyksien.

Solilaalliselta kannalta kaikkein todennäköisimpää ovat ilmaräjähteet, joista on kyse silloin, kun räjähdyksessä syntyvää tulipallo ei kosketa maan pintaa. Lähellä maan pintaa tapahtuva ilmaräjähde aiheutuvat vauriot johtuvat ensisijaisesti paineiskusta, lämpöä teileystä ja alkusäteileystä. Korkealla tapahtuva ilmaräjähdis aiheuttaa ilmakehän ionisoitumisen ja sähkömagneettisen pulssin.

Syvyytsräjähdyksessä syntyvän vahakas tärinääsosto. Muut räjähdyksen välittömät vaikutukset ovat vähäisemmät kuin ilmaräjähteellä, ellei radioaktiivista pilveä muodostu.

Räjähdyksen tapahtuessa veden pinnan alla laajeneva höyry aiheuttaa paineallon, joka näkyy veden pinnalla vettä vaaleampana kehänä ja synnyttää jopa useiden metrien korkuisia hyökyaaltoja. Kuuman höyryn saavuttaessa veden pinnan on tulipallon hehku jo sammutunut. Höyry nousee edelleen ja muodostaa valkean radioaktiivisen pilven, joka tulee sateen muodossa alas noin tunnin kuluessa räjähdyshetkestä.

Ilmakehän alemmissa osissa räjäytetyt räjähteen kokonaisenergiasta noin 100 procenttia menee ensimmäiseen lämpöä teileylpulssiihin ja alle 10 procentti alkusäteelälyn neutroneille ja gammaa teileylvä osalle. Noin kolmannes energiasta ilmenee toisena lämpöä teileylpulssina. Pääosa kokonaisenergiasta jää shokin hydrodynamiiseksi energiaksi, joka voi aiheuttaa normaalia ilmanpaineetta yli miljoona kertaa suuremman paineen.

Välittömästi vapautuvan 180 MeV:n lisäksi jokaista haljennutta ydintä koltti vapautuu fissiotuotteiden radioaktiivisessa hajoamisessa energiaa noin 20 MeV. Tästä energiasta koostuu pääosa alkusäteileystä ja koko jälkisäteily. Energian jakautuminen vaihtelee kuitenkin ydinräjähteen rakenteen mukaan. Tavanomainen

KUVA 14 *Eri energiamuotojen suhteellisen intensiteetin ajallinen käyttäytyminen*

Lähellä maanpintaa räjäytetyn ydinräjähteen energiasta ketjureaktioiden päätytyä 85% on reaktiotuotteiden liike-energiaa ja 15% ydinsäteilyä.

1.6.5 *Tulipallo ja radioaktiivinen pilvi*

KUVA 15 *Tulipallon lämpötilan ajallinen käyttäytyminen*

Isotermisen pallon paine on suuri ja sen pinnalta pyrkii jatkuvasti irtoamaan ns *hydrodynaaminen shokki*. Tämä voi kuitenkin tapahtua vasta sen jälkeen, kun pallon kasvunopeus on hidastunut pienemmäksi kuin shokin lähtönopeus.

Tulipallo, jonka reunana on nyt isotermisen pallon ulkopinta, jatkaa tämän jälkeenkin kasvuaan hidastuvalla nopeudella kokoon, joka on noin kaksi kertaa irtoamissäädettä suurempi. 20 kt:n räjähteellä tämä raja saavutetaan noin sekunnin kuluttua räjähdyksestä. Kuvassa 16 on esitetty tulipallon sädä eri räjähdysoimakkuuksilla hetkellä, jolloin lämpösäteilykulmassa toisella osalla on maksimi-arvo.

KUVA 16 *Tulipallon sädä eri räjähdysoimakkuuksilla*
Alussa tulipallon väri on punainen tai punaruskea ja lopussa valkoinen. Samalla kun tulipallo laajenee, se kohoaa kuumailmapallon tavoin. 1 Mt:n ydinräjähdysken tulipallon halkaisija on 0,7 ms:n kuluttua räjähdyksestä noin 135 m ja kasvaa 10 s:ssa maksimiarvoon noin 2200 m:iin. Tulipallon nousunopeus on tällöin 75 - 100 m/s. Yhden minuutin kulueessa tulipallo kohoaa 7,2 km:n korkeuteen ja jäätyy niin paljon, ettei sitä voida erottaa paljaalla silmällä.

KUVA 17 Radioaktiivisen räjähdyspilven sisäiset virtaukset
Radioaktiivisen pilven nousunopeus riippuu sääolosuhteista ja räjähdyksen energian tuotosta. Pilven nousunopeus, kun kysymyksessä on 1 Mt matalla tapahtunut ilmaräjähde, on esitetty taulukossa 18. Nyrkkisääntöön voidaan pitää, että pilvi saavuttaa viiden kilometrin korkeuden noin puolessa minuutissa.

<table>
<thead>
<tr>
<th>Korkeus (km)</th>
<th>Aika (min)</th>
<th>Nousunopeus (km/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,2</td>
<td>0,3</td>
<td>480</td>
</tr>
<tr>
<td>6,4</td>
<td>0,75</td>
<td>320</td>
</tr>
<tr>
<td>9,7</td>
<td>1,4</td>
<td>230</td>
</tr>
<tr>
<td>16,1</td>
<td>3,8</td>
<td>140</td>
</tr>
<tr>
<td>22,5</td>
<td>6,3</td>
<td>56</td>
</tr>
</tbody>
</table>

KUVA 18 Radioaktiivisen pilven nousunopeus

KUVA 19 Radioaktiivisen pilven mittasuhteet

1.6.6 Paineaalto

Ydinräjähdyksessä syntymä paineaalto on periaatteessa samankaltainen kuin tavannonaisen kemiallisen räjähdyksen synnyttävä paineaalto. Suurin ero on siinä,
että ydinräjähdyksen aiheuttama paineaalto kestää huomattavasti kauemmin ja sen vaikutukset kohdistuvat laajalle alueelle.

KUVA 20 Paineaallon aiheuttama paineen vaihtelu

Paineaallon etureunan, iskuaallon eli shokin nopeus on lähellä räjähdyspistettä monta kertaa äänen nopeutta suurempi, mutta lähelytys sitä kaukana räjähdyspisteestä. Esimerkiksi 1 kt:n matalalla suoritetun ilmaräjähteen paineaalto etenee 2 km:n matkan noin 5 s:ssa.

KUVA 21 I kt:n ilmaräjähteen aiheuttama staattinen ylipaine eri etäisyyksillä. Huomaa Machin heijastuksen merkitys paineeseen.

<table>
<thead>
<tr>
<th>Paineisku</th>
<th>Dynaaminen paine</th>
<th>Paineisku</th>
<th>Nopeus m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Painetuuli</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>341</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>347</td>
<td>11</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>361</td>
<td>34</td>
</tr>
<tr>
<td>30</td>
<td>3</td>
<td>376</td>
<td>65</td>
</tr>
<tr>
<td>50</td>
<td>8</td>
<td>407</td>
<td>102</td>
</tr>
<tr>
<td>100</td>
<td>30</td>
<td>465</td>
<td>178</td>
</tr>
<tr>
<td>200</td>
<td>110</td>
<td>560</td>
<td>294</td>
</tr>
<tr>
<td>350</td>
<td>290</td>
<td>680</td>
<td>425</td>
</tr>
<tr>
<td>500</td>
<td>520</td>
<td>780</td>
<td>529</td>
</tr>
<tr>
<td>1000</td>
<td>1470</td>
<td>1050</td>
<td>785</td>
</tr>
</tbody>
</table>

KUVA 22 Staattisen paineen arvoa vastaava dynaaminen paine sekä paineiskun ja tuulen nopeudet. Hirmumyrskyssä tuulen nopeus ylittää 33 m/s.
Kuva 23 Ylipaineen ulottuvuus ilmaräjähdyksessä

Painealto vaikuttaa ihmisen sekä suoraan että epäsuorasti. Suora vaikutus aihetuu aallon staattisesta paineesta, jota ihmisen kestäää melko hyvin. 300 kPa:n ylipaine johtaa harvoin kuolemaan. Keuhkovauroitua voi kuitenkin syntyä 100 kPa:n ylipaineesta alkaen ja korvien tärykalvo puhjata jo 30-50 kPa:n ylipaineessa.

<table>
<thead>
<tr>
<th>Ylipaine kPa</th>
<th>Räjähdysvoimakkuus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 kt</td>
</tr>
<tr>
<td>Etäisyys maanollapisteestä km</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>7,5</td>
</tr>
<tr>
<td>5</td>
<td>2,1</td>
</tr>
<tr>
<td>15</td>
<td>1,1</td>
</tr>
<tr>
<td>30</td>
<td>0,67</td>
</tr>
<tr>
<td>50</td>
<td>0,50</td>
</tr>
<tr>
<td>100</td>
<td>0,35</td>
</tr>
<tr>
<td>200</td>
<td>0,23</td>
</tr>
<tr>
<td>350</td>
<td>0,16</td>
</tr>
<tr>
<td>500</td>
<td>0,13</td>
</tr>
<tr>
<td>1 000</td>
<td>0,09</td>
</tr>
<tr>
<td>1 500</td>
<td>0,08</td>
</tr>
</tbody>
</table>

Kuva 24 Keskimääräinen ydinräjähdyksen paineaallon aiheuttama vammoittumisetaisyys ihmiselle

<table>
<thead>
<tr>
<th>Tuhonaste</th>
<th>Räjähdysoimakkuus</th>
<th>1 kt</th>
<th>5 kt</th>
<th>20 kt</th>
<th>100 kt</th>
<th>500 kt</th>
<th>1 Mt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etäisyyys maanollapisteestä km</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Täysi tuho</td>
<td>0,4</td>
<td>0,7</td>
<td>1,2</td>
<td>2,0</td>
<td>3,4</td>
<td>4,3</td>
<td></td>
</tr>
<tr>
<td>30 % puista kaatuu</td>
<td>0,6</td>
<td>1,2</td>
<td>2,1</td>
<td>4,0</td>
<td>7,7</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

KUVA 25 Metsätuhot

<table>
<thead>
<tr>
<th>Vauriokuvaus</th>
<th>Ylipainealue [kPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ikkunat särkyvät</td>
<td>1 - 5</td>
</tr>
<tr>
<td>Ovat ja kevyet väliseinät vaurioituvat</td>
<td>5 - 10</td>
</tr>
<tr>
<td>Vaurioita, mutta ei sortumia puurakenteisissa taloissa Ovet, katot ja kevyet seinät rikokoutuvat</td>
<td>10 - 20</td>
</tr>
<tr>
<td>Puurakenteet ja kevyet väliseinät sortuvat, seinäelementit putoilevat</td>
<td>20 - 30</td>
</tr>
<tr>
<td>Muuratut tiiliseinät sortuvat, mutta terässelfoniset ja teräksiset runkorakenteet säilyvät. Vahvasti rakennetut kellariit säilyvät.</td>
<td>30 - 50</td>
</tr>
<tr>
<td>Talot sortuvat, runkorakenteet sortuvat. Vahvat maanalaiset suojat säilyvät (S I- Ikn väestönsuojat, katot ja seinät 25-40 cm betonia, kestää n 100 kPa).</td>
<td>50 - 500</td>
</tr>
<tr>
<td>Täydellinen tuho. Erittäin vahvat maanalaiset suojat saatavat säilyä. (Kalliosuojat kestäävät 750-1000 kPa)</td>
<td>yli 500</td>
</tr>
</tbody>
</table>

KUVA 26 Ylipaineen aiheuttamat vauriot rakennuksille

<table>
<thead>
<tr>
<th>Kalusto</th>
<th>Räjähdysoimakkuus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 kt</td>
</tr>
<tr>
<td>Etäisyys maanollapisteestä km</td>
<td></td>
</tr>
<tr>
<td>Panssarivaunut ja tykit</td>
<td>150</td>
</tr>
<tr>
<td>Moottoriajoneuvot ja viestikalusto</td>
<td>250</td>
</tr>
</tbody>
</table>

KUVA 27 Ylipaineen aiheuttamia kalustovahvioita

1.6.7 Lämpösäteily

Vaikutukseltaan merkittävää lämpösäteily kestää räjähdysoimakkuudesta riippu- en sekunnin kymmenesosista muutamiin sekunteihin. Koska lämpösäteily tulee hyvin lyhyessä ajassa, ovat pienitetään lämpömäärät vaarallisia. Esimerkiksi 1 k:n räjähteestä ei tule 1 kilometrin päähän minuutin kuluessa enempää lämpöä kuin auringosta, silti se aiheuttaa 1. asteen palovamman suojaamattomalle iholle.

Lämpösäteilyn ulottuvuus riippuu räjähdyksen suuruudesta, räjähdyskorkeudesta, sääoloista ja maastosta. Mitä parempi näkyvyys on, sitä kauemmaksi lämpösäteily ulottuu.
Lämpösäteilyn määrä neliömetriä kohti eri etäisyysillä (R) voidaan laskea kaavaesta

\[
Q = \frac{0,35 \times 4,186 \times 10^{12}}{4\pi R^2} \text{ W T joulea/m}^2,
\]

missä Q = lämpösäteilyn määrä, R = etäisyys räjähdyispisteestä, W = räjähteen voima kilotonneissa ja T = ilman läpäisykerroin. Kerroin 0,35 kuvaa termisen energian osuutta koko räjähdystapahtumasta. Ilman läpäisykerroin (T) vaihtelee välillä 0,2-1,0. Näkyvyyden ollessa 20 km, on läpäisykerroin muutaman kilometrin etäisyysdelle 1,0-0,8. Kymmenen kilometrin päässä se on jo noin 0,3. Huono näkyvyys pienenetää läpäisykerrointa. Korkealla olevat pilvet sekä lumi lisäävät lämpösäteilyn voimakkuutta. Läpäisykerroin on tällöin 1,5-2 kertainen hyvään näkyvyyteen verrattuna.

Kuvassa 28 on esitetty ilmaräjähteestä tulevan lämpösäteilyn ulottuvuus silloin, kun näkyvyys on 50 km. Näkyvyyden ollessa 30-40 km vähenee lämpömäärään noin 10% ja näkyvyydellä 10-20 km noin 25%. Matalalla oleva pilvikerros vaimentaa lämpösäteilyn määrää. Tiheä puusto vähentää maan pinnalle tulevan lämpösäteilyn määrää jopa 50-80%.

<table>
<thead>
<tr>
<th>Lämpömäärä J/cm²</th>
<th>Räjähdysoimakkuus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 kt</td>
</tr>
<tr>
<td>Etäisyys km</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1,00</td>
</tr>
<tr>
<td>20</td>
<td>0,72</td>
</tr>
<tr>
<td>40</td>
<td>0,50</td>
</tr>
<tr>
<td>60</td>
<td>0,42</td>
</tr>
<tr>
<td>80</td>
<td>0,37</td>
</tr>
<tr>
<td>100</td>
<td>0,33</td>
</tr>
<tr>
<td>120</td>
<td>0,30</td>
</tr>
</tbody>
</table>

KUVA 28 Lämpösäteilyn ulottuvuus

KUVA 29 Palovammojen syntyminen

Kankaat syttyvät kilotonniluokan räjähdyksissä 30-70 J/cm²:n lämpömäärástä. Vastaavissa oloissa höyläämatön mäntylauta tarvitsee syttyyksen lämpöä noin 25, höylähty mäntylautaa noin 40, höylähty koivulausta noin 80 ja kotitalousmateriaalit 20-60 J/cm². Ikkunalasi ei sanottavasti vaihmensa lämpöäteilyä, joten tulipaloja saattaa syttyä myös rakennusten sisällä, jos lämpömäärat ylittävät mainitut arvot.

Kuva kanervikko tarvitsee syttyyksen lämpöä noin 50 ja kuivunut heinä noin 25 J/cm². Kuvassa 30 on esitetty havumetsän syntyminen poutakaudella ilmarajähteen eri räjähdysovoimakkuuksilla ja etäisyysillä tilanteessa, jossa näkyvyyssen yli 50 km. Pintaräjähdyksissä arvoista tulee vähentää noin 25 %. Lehtimetsä syttyy huo-nommin kuin havumetsä.

<table>
<thead>
<tr>
<th>Räjähdysovoimakkuus</th>
<th>1 kt</th>
<th>5 kt</th>
<th>20 kt</th>
<th>100 kt</th>
<th>500 kt</th>
<th>1 Mt</th>
<th>5 Mt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etäisyys km</td>
<td>1</td>
<td>2</td>
<td>3,5</td>
<td>6,5</td>
<td>13</td>
<td>17</td>
<td>32</td>
</tr>
</tbody>
</table>

KUVA 30 Havumetsän syntyminen
1.6.8 Radioaktiivinen säteily

Alkusäteily on osuus ilmaräjähteen radioaktiivisen säteilyn energiasta on noin kolmasosa eli n 3-5 % räjähdyksen koko energiantuotosta. Pintaräjähteissä sen osuus on noin 25 % pienempi. Koska alfa- ja beetahuikasten kantamat ylimmassa ovat verraten lyhyet, ei niillä alkusäteilyn kannalta ole käytännön merkitystä, vaan sen katsotaankin muodostuvan yksinomaan gamma- ja neutronisäteilystä.

Osa gammasäteilystä muodostuu sekunnin sisällä räjähdyksestä ja pääosa radioaktiivisen hajoamisen seurauksena vähitellen eli ns. viivästyneinä gammoina.

Lähes kaikki ydinräjähdyksessä vapautuvat neutronit ovat peräisin itse räjähdysreaktiosta. Fuusiossa kaikki ja fissiossa noin 99 % neutroneista syntyy välittömästi, eli ns. kerkeinä neutroneina. Loputkin fissioneutronit syntyvät ensimmäisen minuutin kulueessa, joten nekin ovat osa alkusäteilyä. Noin 90 % neutronista absorboituu pommin sisällä, joten noin 10 % niistä pääsee vaikuttamaan alkusäteilyynä. Neutronisäteily aiheuttaa huomattavan suuren biologisen riskin verrattuna niiden kuljettamaan pieneen energiaan, joka on vain 0.025 - 1 % kokonaisenergiasta.

Maahan ulottuvan gamma- ja neutronisäteilyn suhde riippuu ydinräjähteen rakenneesta sekä räjähdysoimakkudesta ja -korkeudesta. Kilotonniluokan fissioräjähteillä neutronisäteilystä saatavan annoksen osuus kokonaisannoksesta on 250 m:n etäisyydellä noin 80 %, 1 km:n etäisyydellä 50 % ja 2 km:n etäisyydellä noin 5 %.

| Säteily-annos Gy | Räjähdysoimakkuus
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 kt</td>
</tr>
<tr>
<td>0,30</td>
<td>1,4</td>
</tr>
<tr>
<td>1</td>
<td>1,1</td>
</tr>
<tr>
<td>3</td>
<td>0,9</td>
</tr>
<tr>
<td>5</td>
<td>0,8</td>
</tr>
<tr>
<td>10</td>
<td>0,7</td>
</tr>
</tbody>
</table>

Etäisyys maanollapisteestä km

KUVA 31 Alkusäteilyannos matalissa ilmaräjähdeissä

Suojautuminen alkusäteilyltä edellyttää, että säteilylähteen ja kohteen välissä on riittävä paksu väliaine, joka vaimentaa säteilyä. Ainoastaan korsut ja varsinaiset suojatilat antavat lähes täydellisen suojan alkusäteilyä vastaan. Suojautuminen painanteisiin tai avopoteroihin ei täysin riitä, koska noin 10 % alkusäteilystä tulee takaa, edestä ja sivulta ns. hajasäteilynä.

Käsityksen eri aineiden suojaukskyvystä antaa paksuus, joka tarvitaan vaimentamaan gammasäteilyn intesiteetti 1000:een osaan, kun on kysymys fissiotuotteiden hajoamisessa syntyvistä gammoista. Arvot ovat 2 m maalle, 1,3 m betonille, 30 cm teräkselle ja 15 cm lyijyllle. Kuvassa 32 on esitetty gammasäteilyn vaimeneminen eri väliaineissa.

KUVA 32 Gammasäteilyn vaimeneminen eri väliaineissa

Radioaktiivisen tuotteiden kiinnittyessä tulipallon mukaansa ottamaan pölyyn ja muuhun hienojakoiseen materiaaliin syntyy radioaktiivisia hiukkasia. Pudotessaan maan pinnalle nämä hiukkaset muodostavat radioaktiivinen laskeuman, jossa voidaan erottaa varhaislaskeuma ja myöhäslaskeuma. Edellisellä tarkoitetaan yhden vuorokauden kuluttua tapahtuvaa laskeumaa ja jälkimmäisellä tätä myöhemmin saapuvaa laskeumaa.

Varhaislaskeuman osuus on suurempi matalalla ja maan pinnalla tapahtuvissa räjähdyksissä kuin korkeissa ilmarräjähdyksissä. Pintaräjähdyksessä syntyvästä kokonaisaktiivisuudesta on varhaislaskeuman osuus 50-70 %. Varhaislaskeuma aiheuttaa merkittävän biologisen vaaran ja sen vaara-alue on huomattavasti suurempi kuin ydinräjähdyksen välittömien vaikutusten alue.

Raskaat hiukkaset putoavat luonnollisesti nopeammin ja lähemmäksi räjähdyssäristöä kuin kevyet hiukkaset. Hiukkaset, joiden koko on suurempi kuin 400 mikrometriä eli yli 0,4 mm, putoavat jo radioaktiivisen pilven nousun aikana. Varhaislaskeuma on selvästi nähtävissä pöly- tai tuhkasateena.

Ydinräjähdyksen radioaktiivisuus syntyy räjähdyssopseissiin kuuluvien ydinreaktioiden tuotteena tai räjähdyksessä vapautuvien neutronien absorboituessa ympäröivän väliaineeseen ja synnyttäessä radioaktiivisia ytimiä. Kolmannen radioaktiivisuuden lähteen muodostaa räjähdyksessä halkeamatta jäänyt uraani tai plutonium, jotka kuitenkin ulkoisena säteilylähteenä voidaan jättää huomiotta. Mikäli ne joutuvat kehon sisäpuolelle hengitysilman, ravinnon tai haavojen kautta, ovat ne kuitenkin erittäin haitallisia.

Annosnopeus noudattaa ajan suhteen potenssilakia. Tarkemmin sanottuna riippuvuus on $t^{1.2}$-lain mukainen. Kun annosnopeus jonoin vertailuaikana t_0 räjähdyshetkästä lukien on R_0, niin minä tahansa muuna ajanhetkenä t annosnopeus R_t on

$$R_t = R_0 \left(\frac{t}{t_0}\right)^{1.2}$$

eli ajan seitsemänkertaistuessa annosnopeus pienenee kymmenenteen osaan.

Lain soveltuvuus ulottuu 25 % tarkkuudella 200 vuorokauteen asti. Tämän jälkeen annosnopeus pienenee nopeammin.

Saastepilveen joutuneiden hiukkasten koot vaihtelevat suuresti, alle mikrometrinä useisiin millimetriihin. Maanalaisissa läähellä pintaa tapahtuneissa räjähtyksissä racioaktiiviseksi muuttuneen kiven tai lohkareen koko voi olla jopa useita metrejä. Todelliseen laskeumaan luokitellaan kuitenkin vain sellaiset hiukkaset, joiden halkaisija on pienempi kuin 0,1 mm. Tähän luokkaan kuuluvien hiukkasten putoamisajat lähtökorkouuden funktiona ja eri hiukkaskokojen osuus kokonaisaktiivisuudesta on esitetty kuvassa 34. Aineen tiheydeksi on oletettu 2.5 g/cm³, joka likipitäen vastaa hiekkaa.

![Diagram](image.png)

KUVA 34 **Eri kokoisten hiukkasten putoamisajat ja niiden osuudet kokonaisaktiivisuudesta**

Laskeuma-alueen määrittämiseksi ja sillä olevien annosnopeuksien arvioimiseksi on useita eri laskentamalleja. On kuitenkin huomattava, että ennusteet ovat teoreettisia ja vain paikalla suoritettavat mittaukset antavat lopullisen varmuuden laskeuman laajuudesta ja annosnopeuksista.
Pikamenetelmällä, jolloin tiedetään vain ydinräjähdyksen tapahtumapaikka ja aika sekä tuulen suunta, voidaan laittaa karkea arvio joukkojen tai väestön hälyttämiseksi ja sateilytiedustelun tehostamiseksi. Suojeluoppaan liitteenä 21 on ohje puolustusvoimien käyttämästä pikamenetelmästä. Kuvassa 35 on esitetty pikamenetelmällä laadittu ennuste 1 M:t:n pintaräjähjeen laskeuma-alueen laajuudesta ja annosnopeuksista eri aikoina tuulen nopeuden ollessa 6,7 m/s.

KUVA 35 Laskeuma-alue ja kokonaisannoskäyrät kolmella eri ajanhetkellä

Laskeuma-alueen tarkka koko ja sillä vallitsevat annosnopeudet saadaan selville kiinteiden sateilyvalvonta-aseiden ja niiden havaintoja täydentävien sateilytiedustelupartioiden mittausten perusteella. Vasta näiden mittausten ja näytteistä tehty-

KUVA 36 15 M:t:n räjähteestä syntyneen laskeuman muoto ja kokonaisannoskäyrät

Varhaislaskumean annosnopeuden heikkenemisen ja laskeumasta saatavan säteilyannoksen laskemiseen voidaan käyttää säteilylaskulevyä, jonka laskentamallit perustuvat aiemmin mainittuun säteilyn heikkenemisen 7-10 sääntöön. Säteilylaskulevyn rakenne ja käyttöohje on esitetty liitteessä 2.

Säteilyn ihmiselle aiheuttamia haittavaikutuksia on käsitelty kohdassa 1.7 ja suojetumista luvussa V.

1.6.9 Ionisaatioilmöt

Avaruudesta, pääosin auringosta, tulevat säteily aiheuttava jatkuvästi ilmamolekyylien luonnollista ionisoitumista. Voimakkainta tämä on ilmakehän ylemmissä kerroksissa, 60 km:stä ylöspäin eli ionsfäärisissä, missä vapaiden elektronien tiheys on suurin.

Ilmarajähteessä syntyyvät ydin- tai röntgensäteily saa aikaan räjähdyspisteen ympärillä olevan ilman ionisoitumisen ja samalla voimakkaan häiriön ilmakehän sähkömagneettisissa ominaisuuksissa. Esimerkiksi 1 Mt:n ilmarajähteestä syntyy 10^{32} vapaata elektronia, mikä on samaa luokkaa, kuin koko maapallon ionsfäärisissä olevien vapaiden elektronien määrä. Koska palloaaltojen pitkään kantaman eteminen perustuu ionsfäärisissä tapahtuviin heijastuksiin, aiheuttaa vapaiden elektronien määrän huomattava lisääntyminen häiriön, joka ilmenee radio- ja tutkatutaloin vaimenemisena, taipumisena tai heijastumisena.

1.6.10 Sähkömagneettinen pulssi (EMP)

Ionisaation lisäksi ydinräjähdyksä aiheuttaa sähkömagneettisen pulssin eli EMP:n. Pulssilla on erittäin suuri merkitys yli 50 km:n korkeudessa suoritetuissa räjäytysissä, sillä tällöin sen elektronisia laitteistoja tuhoa vaikutus ulottuu käytännöllisesti katsoen räjähdyspisteestä näkyvään horisonttiin eli noin 1000 km:iin saakka. Muut maan pinnalla havaittavat vaikutukset ovat hyvin vähäisiä. Kuvassa 37 on esitetty EMP:n vaikutusalueet, kun räjäytyskorkeudet ovat olleet 100 ja 400 km.
Pulssin tärkein aiheuttaja on ydinreaktiossa välittömästi vapautuva **gammasäteily**, jonka osuus ydinräjähdyksen kokonaisenergiasta on noin 0,1 %. Sen vaikutusta tehostaa samassa reaktiossa syntyvien neutronien epäelastinen sirona ympäröivän materiaalin ytimistä. Maan tai veden alla suoritetuissa räjähtykissä syntyvän EMP:n vaikutukset ovat merkityksettömiä.

Radiaalinen sähkökenttä vaikuttaa räjähteen ionisaatioalueessa ja sen särä on muutamia satoja meterejä. Mikäli edelläkuvattu ilmiö olisi täysin symmetrinen, ei siitä aiheutuisi ulospäin sähkömagneettista vaikutusta. Maan läheisyys ja ilman
oheneminen ylöspäin aiheuttavat kuitenkin sähkökentässä epäsymmetrisyyden, joka ilmenee lyhyenä, mutta voimakkaana sähköpulssina. Myös räjähde itse aiheuttaa jonkin verran epäsymmetriaa sähkökentässä.

KUVA 38 Ionisaatioalueen muodon riippuvuus räjäytyskorkeudesta

Korkealla tapahtuneen ydinräjähdyksen aiheuttaman EMP:n seurausena maan pinnalle syntyy sähkökenttä, jonka voimakkuus voi nousea yli 30 kV/m:iin ja magneettikentän voimakkuus noin 100 A/m:iin. Pulssin nousuaika voi nopeimmillaan olla 6 ns ja energiatieheys 30-70 mJ/m^2. Energiaasta puolet on alle 5 MHz:n taajuuksilla, noin 5 % voi olla yli 20-30 MHz:n taajuuksilla.

Pintaräjähdyksen EMP:n voimakkuus on yli 150 kV/m ja lähes 8 kA/m. Sen vaikutusalue on kuitenkin paikallinen, sillä jo 5-10 km:n etäisyydellä ovat korkealla räjäytetyn räjähteen EMP-vaikutukset suuremmat. Pulssin sähkö- ja magneettikenttien huippuarvojen käyttäytyminen räjähdysskorkeuden funktiona on esitetty kuvassa 39.
KUVA 39 Sähkö- ja magneettikentän huippuarvot räjäytyskorkeuden funktiona

1.6.11 Muit ilmiöt

Ydinrääjähdykseen liittyvän joukon muita ilmiöitä, joilla on merkitystä lähinnä räjähdyksen havaitsemisen kannalta.

Ilmaräjähdyksen painealto vaimenee kaukana räjähdyspisteestä tavallisiksi akustisiksi eli äänialoiksi. Ilmakehän kerroksisuuden ja äärellisen korkeuden ansiosta ne saattavat edetä jopa useita kertoja maapallon ympäri. Aaltojen taajuudet ovat niin matalia, ettei niitä voida kuulla, minkä vuoksi niistä käytetään myös nimitystä infraäänä. Aallon voivas edetä joko tuhaimaan akustisina aalloina tai vedensäireissä verratavina painovoima-aaltoina. Viinemainittu on yleisempi etenemismuoto ja se syntyy ydinrääjähdyksen aiheuttaman tulipallon nousun ja laajenemisen seurauksena.

Yli 100 km:n korkeudessa tapahtuneessa ydinrääjähdyksessä muodostuvien röntgensäteiden absorptioalue on laakean levyn muotoinen. Koska röntgensäteet emitoituvat lyhyenä pulssina, ne loitontuvat räjähdyspisteestä valon nopeudella ohuen pallonkuoren tavoin. Kun tämä kuori leikkaa absorptiokerroksen laajenevan renkaan, tapahtuu röntgensäteiden indusoiman ilman fluoresenssi, joka näkyy valona. Rengas pyyhkäisee koko taivaan yli niin nopeasti, että se voidaan rekisteröidä ainoastaan optisien välinein.

Ydinrääjähdyksen irrottamat vapaat elektronit kiinnittyvät ilmamolekyyleihin normaalilta hyvin lyhyessä ajassa. Jos räjähdysscokreus on useita satoja kilometrejä, ne samoin kuin muutkin räjähdyksissä vapautuvat varatut hiukkaset voivat jäädä pitkäksi ajaksi maan magnetteikentään, missä ne virittävät ilmakehän atomeja ja molekyylejä. Tämän seurauksena syntyy räjähdyspaikan kautta kulkevan magnettiisen voimaviivan määräämille alueille keinotekoiset revontulet.

Kun räjähdyss tapahtuu veden yläpuolella tai ilman kosteus on suuri, voi kosteus tiivistä näkyväksi pilveksi eli ns. kondensaatiopilveksi, josta käytetään myös nimeä Wilsonin pilvi. Tämä tapahtuu painealton alipainevaiheen aikana kaukana räjähdyspisteestä, jolloin shokkiyhto on jo suhteellisen heikko. Pilvi häviää muutamassa sekunnissa, kun pisarat höyrystyvät uudelleen lämpenevässä ilmassa.

1.7 SÄTEILYN VAikutus Ihmiseen

1.7.1 Perusteita

Eloonisten solujen rakenne ja toiminta perustuu joitakin poikkeuksia lukuunottamatta DNA- molekyylin, deoksiribonukleiihin, prosisältämään tietoon eli genomiin. Ionisoiva säteily voi aiheuttaa vauroita ja muutoksia geenien sekä muiden tärkeiden DNA- jaksojen rakenteessa tai toiminnassa, jotka ilmenevät säteilyn aiheuttamina terveyshaittoina.

1.7.2 Säteilyn varhaisvaikutukset

Jos ihminen saa vuorokaudessa yli yhden grayn (Gy) kokonaisannoksen ionisoivaa säteilyä, hänelle kehittyy säteilysairaus. 1 Gy vastaa koko keholle saatavaa 1000 milliSv:n eli 1 Sv:n annosta. Jo 0.5 Gy:n annos voi aiheuttaa väähäisiä muutoksia veren valkosolujen määrässä, mutta varsinaista sairautta ei yleensä kehity.

Jos kokonaisannos ylittää 6-7 Gy, luuydin tuhoutuu yleensä täydellisesti. Tällöin toipumisen on lähes mahdotonta, koska elävää kantasoluukkoa ei ole jäljellä. Potilas menehtyy infektioihin tai verenvuotoihin viimeistään kuukauden kuluttua altistuksesta.

Suuri säteilyannos saattaa aiheuttaa myös keuhkovaurion, joka ilmenee kuivana yskänä, hengenahdistuksena ja kuumeiluna muutamien viikkojen kuluttua altistumisesta. Oireet johtuvat keuhkorakkuloihin muodostuvasta sidekudoksesta, hiuussuonen määrän vähenemisestä ja keuhkorakkuloiden ilmatilan pienenemisestä. Vaikka potilas jääisikin henkiin, on seurauksena yleensä pysyvä hengityksen vajaa-toiminta ja taipumus keuhkoinfektioihin.

KUVA 40 Säteilylähteen koskettamisen aiheuttama ihovamma
Hiustenlähtöä pidetään kokokehoaltistuksessa kohtalaisen vaikean säteilysairauden oireena. Jo 3 - 4 Gy:n annos aiheuttaa hiuskarvojen lähtemisen altistuneelta alueelta parin viikon kuluttua. Hiukset saattavat kasvaa uudelleen kuukausien kuluttua. Hiustenlähtö on kuitenkin pysyvä, jos pääähtäjä on yli 7 Gy. Suun ja ylempi hengitysteiden limakalvot voivat vaarioitua samalla tavalla ja samoista syistä kuin iho.

<table>
<thead>
<tr>
<th>Annos</th>
<th>Vaikutus</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-10 Sv</td>
<td>6-10 Gy</td>
</tr>
<tr>
<td>4-6</td>
<td>4-6 Gy</td>
</tr>
<tr>
<td>2-4</td>
<td>2-4 Gy</td>
</tr>
<tr>
<td>1/2-2</td>
<td>1/2-2 Gy</td>
</tr>
<tr>
<td>500 milliSv</td>
<td>500 milliGy</td>
</tr>
</tbody>
</table>

KUVA 41 Äkillisesti saadun säteilyannoksen aiheuttama terveyshaittoja

1.7.3 Säteilyn myöähisvaikutukset

Säteilyn myöähisvaikutuksista merkityksellisin on syöpä. Teoreettisiin laskelmii perustuvissa arvioissa sairastumisriskiä on kuvattu seuraavasti: "Jos 10 000 ihmistä kukin saisi 100 milliSv:n kokonaisannoksen, 50 henkilöä kuolisi ennenaikeisesti säteilyn aiheuttamaan syöpään. Riski kasvaisi kaksinkertaiksi, jos pitkäaikainen annoskertomä olisi 1500 mSv eli 1,5 Sv".

Vallitseva muttaatio ilmenee aina, peittyvä vasta silloin, kun molemmilla vanhemmilla on sama muttaatio. Geneettisen riskin todennäköisyyttä pidetään pienempänä kuin mahdollisuutta saada sääteilyn aiheuttama syöpä.

1.8 RAUHAN AJAN SÄTEILYONNETTOMUUDET

1.8.1 Ydinvoimalaonnettomuus

Ydinvoimalaitoksen normaalin toiminnan aiheuttamat säteilyannokset ovat sekä työntekijöille että lähiseudun asukkaille pieniä verrattuna annoksiin, jotka ovat peräisin luonnonsäteilystä.

Ydinvoimalaitokset pyritään suunnittelemaan ja varustamaan siten, ettei minkäänlainen onnettomuus vaurioittaisi itse reaktoria. Varmennetuilla turvajärjestelmillä ja monilla peräkkäisillä esteillä pyritään estämään radioaktiivisten aineiden leviäminen ympäristöön. Onnettomuutta ja sen aiheuttamaa radioaktiivisten aineiden päästöä ei kuitenkaan voida täysin sulkea pois.

Reaktorivaurio voi aiheutua esimerkiksi polttoainesauvan rikkoutumisesta, jolloin jäähdytysveteen vuotaaa radioaktiivisia tuotteita. Radioaktiivisia aineita voi vapautua myös silloin, jos reaktori ylikuumenee joko vuodon tai jäähdytysjärjestelmä toimi tai reaktoria kyetää sammuttamaan riittävän nopeasti. Inhimillisten erehdysten ja tahallisen vahingoittamisen mahdollisuus on pyrittä minimoimaan.

Vakavan ydinvoimalauluvion seuraukset riippuvat onnettomuustyyivistä, päästön suuruudesta ja kestosta sekä vapautuneiden radioaktiivisten aineiden koostumuksesta ja leviämistavasta. Pahimmillaan sekä terveydelliset haitat että taloudelliset vahingot saattavat olla mittaamattoman suuria. Väestö voidaan joutua evakuuoimaan pysyvästi muutamien kymmenien kilometrien sääteeltä voimalasta, lähilaskemasta saastuneen alueen maa- ja metsätalouslävättö voi olla lähes mahdotonta, asuntojen ja maan arvo romahdaisi jne. Radioaktiivisia aineita saattaa nousta myös korkealle ilmakehään, jossa ne voivat kulkeutua satoja jopa tuhansia kilometrejä ja laskeutua myöhäislaskeumana esimerkiksi sateen mukana maahan.

Suojautumistoimenpiteet voidaan jakaa kolmeen vaiheeseen. Alkuvaiheessa tärkeintä on suojautua sisätiloihin, nauttia joditabletit, puhdistaa henkilöstö laskeumanpölystä ja välttää oleskelua ulkona. Suojaväistö voidaan toteuttaa vasta sen jäl-
1.8.2 Onnettomuudet ydinkäyttöisillä aluksilla

Vakavan reaktorionnettomuuden yhteydessä myös aluksen ydinaseet saattavat vaurioitua. Lukitusjärjestelmät todennäköisesti estävät niiden räjähtämisen, mutta plutoniumia voi silti levitä mereen tai ilmakehään.

1.8.3 Onnettomuudet käytetyn polttoaineen käsitteilyssä

Välivarasto voi olla vesiallas-, kuiva- tai ns. kuljetussäiliövarasto, joista ensimmäistä on yleisin. Kuljetussäiliövarastoissa polttoainenippuja ei poisteta lainkaan säiliöistään.

Euroopan suurimmat käytetyn ydinpolttoaineen jälleenkäsittelylaitokset ovat Englannissa, Ranskassa ja Venäjällä. Suomen rajojen lähellä niitä ei ole. Laitosten turvallisuuskysymykset ovat samantapaisia kuin ydinvoimaloissa. Kevytvesireaktoreissa käytetystä polttoaineesta on noin 96 % uraniaa, 3 % fissiotuotteita, 1 % plutoniumia ja pieni määrä muita aktiinoideja. Radioaktiiviset aineet ovat kuitenkin helposti leviävissä muodossa, joten päästöjen vähentämiseksi rakennetaan erityisiä fissiotuotteiden ja raskaiden alkuaineiden talteenottojärjestelmiä.

Jälleenkäsittelylaitoksissa suurin vaara aiheutuu tulipaloista, tavanomaiset räjähdyskiset ja kriittisysyvaarasta eli ydinenergian tuotosta räjähdysmäisesti. Näistä kaikista saattaa olla seurauksena radioaktiivisten aineiden vapautuminen ympäristöön. Prosessin kemialliset reaktiot tunnetaan varsin hyvin, joten tulipalo- ja räjähdyssvaaraa voidaan vähentää oikealla suunnittelulla, valitsemalla halkeavien aineiden konsentraatiot oikein ja käyttämällä sopivia neutroniabsorbaattoreita.

1.8.4 Onnettomuus käsiteltäessä ydinaseita

Ydinaseiden siirtämiseen, varastointiin ja purkamiseen liittyvä aina säteilyvaara. Kuljetusonnettomuuden seurauksena aseissa oleva plutonium voi aiheuttaa erittäin pahan, joskin vain paikallisen säteilyvaaran. Mikäli onnettomuuteen liittyvät tavaranomainen räjähdyss, voi radioaktiivinen aine levitä kilometrien laajuiselle alueel-
le. Riskit lisääntyvät sodan uhan aikana, jolloin myös ydinaseita valmistellaan ampumakuntoon tai siirretään uusiin asemiin.

Ydinaseiden **varastointi** edellyttää eritysrakenteita sekä säännöllistä aseiden seurantaa ja huoltamista. Mikäli näitä ei esimerkiksi taloudellisten resurssien tai muiden syiden vuoksi voida toteuttaa asianmukaisesti, voi varastossa tapahtua säteilyonnettomuus, jolla on ainakin paikallinen vaikutus.

1.8.5 **Muit onnettomuudet**

Maanalaiset ydinkokeet tehdään syvällä maaperässä joko pystysuorissa kuluiissa tai vaakasuorissa tunneleissa. Vaikka kokeisiin valmistautuakseen huoolellisesti, on mahdollista, että räjähdysken seurauksena syntyvä halkeamista tai maaperässä olevista huokosista pääsee radioaktiivisista aineista ilmehään.

Ydinkäyttötöissä satelliiteissa on joko ydinparisto (radionuclidiparisto) tai ydinreaktori, joissa syntyvää lämpöä muutetaan sähköksi. Satelliitin putoaminen maahan saattaa aiheuttaa radioaktiivisten hiukkasten leviämisen laajalle alueelle.

Reaktorilla varustetuissa satelliitin poltttoaine on korkeasti väkevöityä urania, jota on noin 30 kg. Radioisootoppeja hyödyntävissä satelliiteissa käytetään tavallisimmin plutoniumia ja strontiumia 1-10 kg. **239Pu** lähettää alfasäteilyä (heliumytimiä). **90Sr** on beetasäteilijä, jonka lähettämä elektroneja käytetään suoraan sähkövirran tuottamiseen.

Aiemmin pyyttiin siihen, että paristolla varustettu satelliitti paloi nopeasti syöksyessään ilmehään. Nykyisin satelliitit voimalähdeosa rakennetaan siten, että se ei pala ilmehähssä eikä rikkoudu törmästessään maahan tai veteen. Reaktorilla varustettu satelliitti laukaistaan käytön jälkeen korkeammalle radalle, jossa sen sisältämät radioaktiiviset aineet hajoavat 100-300 vuoden ajan, ennen kuin palavat ilmehään.

Vakava vaaratilanne syntyy, jos reaktorikäyttööin satelliitti syöksyy ilmehään suunniteltua aiemmin eikä pala kokonaan ilmehähän yläosissa. Vaikka putoavan satelliitin lentorata voidaakin ennustaa melko hyvin, kyttään tarkka putoamisalue
määrittämään vasta muutamaa tuntia ennen satelliitin hajoamista ja jäänteiden maahansyyöksymistä. Satelliitti voi aiheuttaa säteilyvaaran kynmenien, satojen kilometrien pituiselle kapeahkolle alueelle. Väestön saama kokonaisannos jäänee vähäisiksi, asutuilla alueilla reaktorisydämen jäänteet sitävastoin voivat aiheuttaa suuriakin yksilöannoksia.

1.9 SÄTEILYN RAJA-ARVOT JA NIIDEN YLITTÄMISEN AIHEUTTAMAT TOIMENPITEET

Säteilytilanteen akuuttivaiheen johtamisen ja tiedottamisen selkiyttämiseksi viranomaisille on käsketty ulkoilman annosnopeuteen perustuvat säteilyn raja-arvot ja niiden ylittämisen aiheuttamat toimenpiteit, jotka on esitetty kuvassa 42.

<table>
<thead>
<tr>
<th>Raja-arvo/Annosnopeus</th>
<th>Vaikutus/Toimenpide</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 miliSv</td>
<td>Yläraja rauhan aikana pelastettaessa Ihmisiä ja estettäessä suuronnettomuksia, käytettävä suojanaamaria ja -pukea</td>
</tr>
<tr>
<td>100 miliSv</td>
<td>Yläraja rauhan aikana pelastuspalvelussa, käytettävä suojanaamaria ja -pukea</td>
</tr>
<tr>
<td>50 miliSv</td>
<td>Yläraja säteilyyn alaisessa työssä vuodessa</td>
</tr>
<tr>
<td>6 miliSv</td>
<td>Keskimääräinen suomalaisten saama säteilyannos vuodessa</td>
</tr>
<tr>
<td>1000 mikroSv/h</td>
<td>Hälytyssraja yleisölle = Säteilyhälytys</td>
</tr>
<tr>
<td>100 mikroSv/h</td>
<td>Varoitussraja yleisölle = Säteilyvaroitus</td>
</tr>
<tr>
<td>0,7 mikroSv/h</td>
<td>Viranomaisten välinen ilmoitsursaja</td>
</tr>
<tr>
<td>0,1-0,2 mikroSv/h</td>
<td>Normaali taustasäteily</td>
</tr>
</tbody>
</table>

KUVA 42 Säteilyn raja-arvot ja ylittämisestä aiheutuvat toimenpiteet

Normaalin taustasäteilyn vallitessa säteilyvalvonta on **perusvalmiudessa**. Viimeistään silloin, kun ilmoitursraja ylittyy, aloittavat säteilyvalvontaan osallistuvat ja sitä johtavat viranomaiset tietojen vaihtamisen. Viimeistään tällöin myös siirryttäen **tehostettuun** säteilyvalvontaan. **Suojeluvarouis** väestölle annetaan viimeistään silloin, kun säteilyn voimakkuus ylittää 100 mikrosievertiä. **Suojeluhälytys** käskeään voimakkuuden ylittäessä 1000 mikrosievertiä eli 1 millisievertiä.

Säteilyturvakeskuksen suosituksen mukaan väestön tulee suojaautua sisätiloihin, välttää liikkumista ulkona ja nauttia joditabletit, jos säteilyn annosnopeus ylittää 100 mikroSv/h.

Sisätilojen ja varsinaisten väestönsuojien antamaa suojaan on käsitelty tarkemmin VI luvussa. Suojautumista koskeva pääös tulisi tehdä 3-4 tuntia ennen päästöpilven saapumista, jotta tiedottamiseen ja suojaumiseen jäisi riittävästi aikaa.
Liikkumisrajoituksilla voidaan vähentää turhia säteilyannoksia sekä pitää asiattomat poissa pelastus- ja puhdistustöiden tieltä.

Stabiilin jodin nauttimisella voidaan vähentää radioaktiivisen jodin kerääntymistä kilpirauhaan. Kaliumjodtabletit suojavat tehokkaasti varsin kännykkäset heijastuvalta radioaktiiviselta jodilta. Yli 12-vuotiaille voidaan antaa kerta-annokset 1 tabletit, 1-12 vuotiaille puoli tabletit, alle 1 vuoden ikäisille 1/4 tabletit ja alle viikon ikäisille 1/8 tabletit. Jos stabiili jodi nauittaan 1-6 tuntia ennen radioaktiivisen jodin hengittämistä, antaa se lähes 100 % suojan. Suoja on noin 90 %, jos stabiili jodi nauittaan samaan aikaan radioaktiivisen jodin sisäänhengittämisen kanssa ja 50 %, jos joditabletti otetaan 4-6 tuntia myöhemmin. Puolen vuorokauden kuluttua radioaktiivisen jodin hengittämistä joditablettien nauttimisella ei vähennetä kilpirauhaan saamaa sääteilyannosta.

Mikäli annosnopeudet arvioidaan ylitattavan 500 mikroSv/h, suositellaan suojavälistöä. Suojavälistöllä tarkoitetaan väestön tai sen osan nopeaa ja tilapäistä siirtämistä laskeuma-alueelta ennen saastepilven saapumista. Näin menetellä voidaan välttää lähes koko sääteilyannos. Mikäli on epävarmaa, ehditäinkö suojaväistö toteuttaa ennen radioaktiivisen päästön saapumista, on siitä luovuttava.

Sääteilytilanteen akuuttivaiheen jälkeen saateta tulla harkittavaksi koko väestön tai sen osien siirtäminen saastuneelta alueelta puhtaaseen elinypäristöön. Väestön siirtoja ei toteuta operatiivisten toimenpidetason perusteella, koska harkintaaikaa on yleensä riittävästi ja päätöksen teon yhteydessä joudutaan pohtimaan hyvin laajasti yhteiskunnallisia ja sosiaalisia kysymyksiä.

Väestön uudelleen asuttaminen on äärimmäinen toimenpide, jonka tulee perustua terveydellisten näkökohtien lisäksi vapaaehtoisuuteen. Pysyvä siirtäminä pidetään lähes aina perusteltuna, jos elinkeinäinen annos nousee yli 1000 milliSv.

Myös elintarvikkeille on määritetty ohjeelliset yhteispohjoismaiset aktiivisuusarvot, joiden perusteella niiden käyttöä voidaan rajoittaa ja siten vähentää elimistöön joutuvaa säteilyannosta. Äkillisessä säteilytilanteessa käytetään korkeampia arvoja, jotka eivät kuitenkaan ilman eri päätöstä saa olla voimassa yli kuukautta. Eräiden elintarvikkeiden nauttimista rajoittavat arvot on esitetty kuvassa 43.

<table>
<thead>
<tr>
<th>Radionuklidi ja elintarvike</th>
<th>Pysyvä toimenpidetaso (Bq/kg)</th>
<th>Toimenpidetaso 1. kuukauden aikana (Bq/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>239Pu ja muut aktinidit maidossa ja lasten ruuassa</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>239Pu ja muut aktinidit muissa elintarvikkeissa</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>90Sr ja 131I maidossa ja lasten ruuassa, 90Sr muissa elintarvikkeissa</td>
<td>100</td>
<td>1000</td>
</tr>
<tr>
<td>134Cs ja 137Cs maidossa ja lasten ruuassa, 131I, 134Cs ja 137Cs muissa elintarvikkeissa</td>
<td>1000</td>
<td>10000</td>
</tr>
</tbody>
</table>

KUVA 43 Elintarvikkeiden nauttimista rajoittavat aktiivisuusarvot

II LUKU
BIOLOGINEN ASE

2.1 YLEISTÄ

Biologisella aseella (bioase, B-ase) tarkoitetaan elävien pieneliöiden, mikrobien tai niiden osien käyttöä asetarkoituksessa ja niiden levittämiseen käytettävää asei-
ta. Vuonna 1972 solmitun kansainvälinen B-asesopimuksen mukaan myös toksii-
nit, jotka voivat olla mikrobien, kasvien tai eläinten tuottamia myrkkyjä, lue-
taan biologisiksi aseiksi. Levitysjärjestelmä voidaan valita yksinkertaisesta
sabotaasikäyttöön soveltuvasta säiliöstä tai pullosta nykyaikaisimpaan ase-
järjestelmään.

Biologisten aseiden käyttön päämääränä on saada aikaan sairastumiseen tai kuole-
maan johtava tartunta tai toksiinin aiheuttama myrkytys vastustajan henkilöstössä
 tai eläimissä. Tavallisimmin tartunta tapahtuu hengityksen tai ruuansulatuseimis-
tön kautta. Iholle saatu taudinaiheuttaja ei yleensä pysty aiheuttamaan sairastu-
mista, ellei agenssia siirrettä esimerkiksi kädellä suuhun. Tartunnan saaneet voivat
levittää tautia edelleen. Myös maaston saastuttaminen ja sen käytön estäminen
miinoitteiden tapaan on mahdollista.

Vaikka B-asetta ei todistettavasti olekaan käytetty nykyaikaisissa sodissa laajassa
mittakaavassa, on sen käyttömahdollisuksi tutkittu viime vuosienkin aikana.
Kemiaallisten aseiden kieltosoimimus on lisännyt kiinnostusta B-asetta kohtaan. Bio-
logisen aseen laajamittaista käyttöä rajoittavat tautien vaikeasti ennakotavissa oleva
leviäminen, pitkät tartunta-ajat ja omien joukkojen suojaamistarve.

2.2 B-ASEAGENSSIT

B-asekäyttöön sopivia mikrobeja on kaikissa mikrobiryhmissä, mutta virukset,
bakteerit ja toksinin tarjoavat laajimmat vaihtoehtovalikoimat. Myös eräät mutt
mikrobien osat voivat tulla kyseeseen.

Bakteerit ovat pieniä eliöitä, joiden koko on noin 0,5-1 um. Niitä tavataan lähes
kaikkialta luonnosta. Myös ihmisen iholla ja suolistossa elää suuri määrä bakteere-
ja, joita kutsutaan normaaliflooraksi. Useimmat bakteerit pystyvät kasvamaan
keinotekoisissa elatusaineissa, mikä tekee niiden kasvattamisen verraten helpo-
si. Tavalliset bakteerit lisääntyvät jakautumalla. Hyvissä kasvuolosuhteissa yksi
Jotta bakteeri tai muu mikrobi soveltuisi hyvin B-aseagenssiksi, sen on aiheuttettava vekava tauti, sen tulee tarttua helposti, sen on kestettävä ulkoisias vaikutuksia ja tartunta on aikaansaattava mahdollisimman pienellä määrällä B-agenssia. Kuvassa 44 on esitetty B-aseeksii soveltuvia bakteereja.

<table>
<thead>
<tr>
<th>Bakteeri</th>
<th>Tauti</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillus anthracis</td>
<td>Pernarutto eli anthrax</td>
</tr>
<tr>
<td>Brusella abortus</td>
<td>Bruselloosi</td>
</tr>
<tr>
<td>Chlamydia psittaci</td>
<td>Papukaijakuume</td>
</tr>
<tr>
<td>Francisella tularensis</td>
<td>Tularemia eli jänisruutu</td>
</tr>
<tr>
<td>Pseudomonas mallei</td>
<td>Räkätauti</td>
</tr>
<tr>
<td>Pseudomonas pseudomallei</td>
<td>Melioidoosi</td>
</tr>
<tr>
<td>Salmonella typhi</td>
<td>Lavautaati</td>
</tr>
<tr>
<td>Shigella dysenteriae</td>
<td>Punautaati</td>
</tr>
<tr>
<td>Vibrio cholerae</td>
<td>Kolera</td>
</tr>
<tr>
<td>Yersinia pestis</td>
<td>Rutto</td>
</tr>
</tbody>
</table>

KUVA 44 B-aseeksi soveltuvia bakteereja

Bakteerien ja virusten huono säilyvyys rajoittaa niiden käyttöä asejärjestelmissä. Paras säilytysmenetelmä on mikrobien kylmäkuivaus. Useimmissa tapauksissa joudutaneen kuitenkin turvautumaan B-aseiden määrävälein toteuttettavaan uudelleen lataamiseen.

Klamydiat ja riketsiat ovat rakenteeltaan bakteerien kaltaisia, mutta muistuttavat joiltakin ominaisuuksiltaan viruksia. Myös näistä pieneköistä mikrobiryhmistä löytyy useita B-agensseiksi soveltuvia taudinaiheuttajia.

<table>
<thead>
<tr>
<th>Toksiini</th>
<th>Lähde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Botulinus-toksiini</td>
<td>Bakteerin tuoma myrkky</td>
</tr>
<tr>
<td>Perfringens-toksiinit</td>
<td>Bakteerin tuoma myrkky</td>
</tr>
<tr>
<td>Stafylokokki-toksiinit (SEB)</td>
<td>Bakteerin tuoma myrkky</td>
</tr>
<tr>
<td>Risiini</td>
<td>Risiinipavusta saatava myrkky</td>
</tr>
<tr>
<td>Mikrovystiini</td>
<td>Sinilevämymykky</td>
</tr>
<tr>
<td>Saxitoksiini</td>
<td>Merinilviäisestä saatava myrkky</td>
</tr>
</tbody>
</table>

KUVA 45 B-aseeksi soveltuvia toksiineja

Biotekniikan menetelmin voidaan taudinaiheuttajia nykyisin muokata yhä paremmiin soveltuviksi B-asekäyttöön. Varattoman bakteerin voidaan myös siirtää perintötekijä, joka mahdollistaa myrkylisen toksiinin tuottamisen ja joka näin voi kokonaan muuttaa bakteerin alkuperäistä luonnetta. Ominaisuuksia, joita voidaan ja joita kannattaa muokata ovat

- bakteerin lääkeaineherkkyyden vähentäminen, millä heikennetään hoitomahdollisuuksia
- mikrobin säilyvyyden parantaminen
- mikrobin taudinaihettamiskyvyn lisääminen sekä
- mikrobin pintarakenteiden muuttaminen, millä voidaan vähentää rokotuksen tehoa.

2.3 BIOLOGISEN TAISTELUAINEN LEVITYS

2.4 BIOLOGISEN ASEN VAIKUTUS

Toksiinit aiheuttavat myrkkyyskiä, jotka vastaavat kemiallisilla myrkyillä aikaan- saatuja tautioloja. Tässä mielessä toksiinit ovat hyvin läheillä kemiallista asetta. Toksiinien aiheuttama myrkyvyvaikutus tulee esille verraten hitaasti, tuntien - muu-

<table>
<thead>
<tr>
<th>Tauti</th>
<th>Oireeton aika</th>
<th>Kuolleisuus ilman hoitoa</th>
<th>Muuta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bakteeritauteja</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rutto</td>
<td>2-5 vrk</td>
<td>50-100 %</td>
<td>Aerosolilevitys aiheuttaa ns keuhkoruton, joka on taudin pahin muoto</td>
</tr>
<tr>
<td>Anthrax</td>
<td>3-5 vrk</td>
<td>lähes 100 %</td>
<td>Bakteri muodostaa itiöitä, jotka ovat hyvin kestäviä, aerosolilevityksen aiheuttama keuhko-anthrax on vaarallisin tautimuoto</td>
</tr>
<tr>
<td>Tularemia</td>
<td>2-10 vrk</td>
<td>alle 20 %</td>
<td>Helposti tarttua, aerosolilevitys aiheuttaa taudin vakavimman muodon</td>
</tr>
<tr>
<td>Kolera</td>
<td>1-5 vrk</td>
<td>20-50 %</td>
<td>Tartunta ruuan tai juoma väli tyksellä, melko helposti kontrolloitavissa ja hoidettavissa</td>
</tr>
<tr>
<td>Riketsiatauteja</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q-kuume</td>
<td>1-4 vrk</td>
<td>alle 5 %</td>
<td>Helposti tarttua melko lieväöireinen kuumesairaus. Aiheuttaja Coxiella burneti</td>
</tr>
<tr>
<td>Virustautteja</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isorokko</td>
<td>12-14 vrk</td>
<td>10-50 %</td>
<td>Kestävä, helposti tarttua. Virus on tarkoitus kokonaan häävittää maailmasta</td>
</tr>
<tr>
<td>Lassakuume</td>
<td>2-14 vrk</td>
<td>10-50 %</td>
<td>Ns verenhuotokuume, kaikkia ominaisuuksia ei vielä tunneta</td>
</tr>
<tr>
<td>Enkefalliitti</td>
<td>1-2 vrk</td>
<td>5-50 %</td>
<td>Useita eri aiheuttajia, eivät kovin kestäviä, levitys voi olla vaikeaa</td>
</tr>
<tr>
<td>Toksiinimyrkytyksiä</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Botulinustoksiini</td>
<td>1-3 vrk</td>
<td>50-100 %</td>
<td>Voimakkain tunnettu myrkyky. Levitys ruuan tai juoman välityksellä, tuhotuu keitetäessä</td>
</tr>
<tr>
<td>Stafylokokki-toksiini</td>
<td>1-5 tuntia</td>
<td>alle 1 %</td>
<td>Kestää keittämisenv, levitys ruuan tai juoman välityksellä</td>
</tr>
</tbody>
</table>

KUVA 46 Eräiden b-agenssien ominaisuuksia

2.5 B-ASEEN ILMAISU JA SUOJAUTUMINEN

B-aseen käyttö voidaan todeta joko mikrobin aiheuttamasta sairaudesta tai havaitsemalla mikrobi levittämisen yhteydessä. B-aseen tai aiheuttamien autteiden erottaminen poikkeusoloissa ja sodan aikana esiintyvistä tavanomaisista tartunta- autteista ja epidemioista on erittäin hankalaa. Jos epidemicia kuitenkin alkaa äkillisesti ja yhtäaikaisesti, sen oireet ovat poikkeavat tai kysyessä on autu taudin- aiheuttaja, on syytä epäillä biologisen aseen käyttöä.

Lopullinen varmistus saadaan vasta, kun taudinaiheuttaja tunnistetaan mikrobiologisin menetelmän laboratoriottukimukseissa. Tunnistamisessa käytettävä näyte voi olla peräisin elintarvikkeista, juomavedestä, ilmankerääjästä, ympäristöstä, ihmisestä tai eläimestä. Näytteet voidaan tutkia joko mikrobiologian kenttälaboratorioissa, kenttähygienian laboratorioissa tai siviililaboratorioissa.

Tekstiinien tunnistamiseen käytetään joko immunologisia menetelmiä, biosensoreita tai kromatografiamenetelmiä. Viimeinainittua menetelmää käytetään myös kemiallisia taisteluaineita tutkittaessa.

Taistelukentällä tapahtuvaan ilmaisuun on toistaiseksi varsin vähän laitteistoja. Niiden kehittäminen on kuitenkin käynnissä. Nykyisillä laitteilla voidaan paljastaa bakteerit ja erää muut mikrobit niissä olevan ATP-ainen perustella. Ilmaisu perustuu entsyynmireaktioissa syntyvään valoon, joten hälytys on mahdollista saa-
da nopeasti ja automaattisesti. Ilmassa normaalisti esiintyvät bakteerit ja muu biologinen materiaali, kuten siitepöly, saattavat aiheuttaa virheilmaisuja tällä periaatteella toimivissa laitteissa.

Toisena tunnistusmenetelmänä käytetään biosensoreita tai vasta-aineita, joilla voidaan todeta ilmassa olevat B-aseagenssit. Vasta-ainetekniikkaa käytetään myös yksinkertaisissa tiedusteluliiksoissa, jotka ovat samantyyppisiä kuin vastaavat C-agenssien ilmaisuliusko. Jokaista B-agenssia kohti tarvitaan kuitenkin oma liuska, joten niiden laajamittainen kenttäkäyttö ei ole mahdollista.

Koska kenttäkelopoisia automaattisia ilmaisulaitteita ei vielä ole, on syytä muistaa myös merkit, jotka voivat viitata B-aseen käyttöön. Näitä ovat
- hitaat, matalalla tapahtuvat lennot yöllä
- maastosta löytyvät levitysastiat
- murrot vesilaitoksiin ja elintarvikevarastoihin
- kuolleet eläimet maastossa ja
- oudot, heikosti räjähtävät ammukset.

Tärkeimmät suojaautumiskeinot B-aseita vastaan ovat
- rokotteet
- suojanaamarin ja muun suojaräjystuksen käyttäminen
- suojaautuminen sisätiloihin ja niiden tiivistäminen
- hyvä kenttähygienia
- juomaveden keittäminen tai kemiallinen puhdistaminen
- elintarvikkeiden suojaaminen ja keittäminen sekä
- tartunnan saaneiden eristäminen.
III LUKU
KEMIALLISET TAISTELUAINEET

3.1 KEMIALLISTEN TAISTELUAINEIDEN MÄÄRITTELY

Kemiallinen ase (C-ase) käsittää taisteluaineen ja sen maaliinsaattamisjärjestelmän. Esimerkiksi raketinheitin, joka ampuu taisteluaineella ladattuja raketteja, on kemiallinen ase. Sen tuhovaikutus ei perustu räjähtävään voimaan, vaan taisteluaineen myrkyvyvaikutukseen.

<table>
<thead>
<tr>
<th>Kuolettavat</th>
<th>Toimintakykyä alentavat</th>
<th>Kasvintuhoaineet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hermokaasut</td>
<td>Årstyttävät</td>
<td>Lehdenpudottajat</td>
</tr>
<tr>
<td>Yleismyrkylliset kaasut</td>
<td>Tukahduttavat</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Syövyyttävät</td>
<td>Kasvien hävittäjät</td>
</tr>
<tr>
<td>Toksiinit</td>
<td>Psykoaineet</td>
<td></td>
</tr>
</tbody>
</table>

KUVA 47 Kemiallisten taisteluaaineiden ryhmittely

3.1.1 Ärsyttävät aineet

<table>
<thead>
<tr>
<th>Aine Nimi ja NATO koodi</th>
<th>Kemiallinen rakenne</th>
<th>Haittuvuus mg/m³ 20 °C</th>
<th>Sp/Kp °C</th>
<th>Huom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klooriasetonifenoni CN</td>
<td>O (-\text{C-CH}_2\text{Cl})</td>
<td>0,105</td>
<td>56/247</td>
<td>kynel-kaasuaerosoli</td>
</tr>
<tr>
<td>o-Klooribentsaalimalonidinitrilii CS</td>
<td>O(-\text{CH=CN})</td>
<td>0,71</td>
<td>93/310</td>
<td>kynel-kaasuaerosoli</td>
</tr>
<tr>
<td>Adamiotti DM</td>
<td>H-N(\text{As-Cl})</td>
<td>0,02</td>
<td>197/410</td>
<td>oksennus-kaasuaerosoli</td>
</tr>
<tr>
<td>Difenylvikooriarsiini DC</td>
<td>O(\text{As-Cl})</td>
<td>0,3</td>
<td>35/383</td>
<td>oksennus-kaasuaerosoli</td>
</tr>
<tr>
<td>Dibentso-1, 4-oksatsepiini CR</td>
<td>O(\text{N=O})</td>
<td><1,0</td>
<td>72/?</td>
<td>kynel-kaasuaerosoli</td>
</tr>
</tbody>
</table>

KUVA 48 Ärsyttävien taisteluaineiden ominaisuuksia

3.1.2 Tuhahduttavat aineet

Fosgeeni on huoneenlämpötilassa ilmaa raskaampi, palamaton, kaasumainen aine, jonka haju muistuttaa pilaantuneen heinän hajua. Se hajooa vedessä hitaasti suolahapoksi ja hiilidioksidiksi. Fosgeenilla ei nykyisin ole merkitystä taisteluaineena, vaikka se aiheuttiin ensimmäisessä maailman sodassa 80 % kaikista taisteluaineikukoelmiasta. Rauhanomaisessa tarkoituksessa fosgeenia käytetään organisten hienokemikaalien, kuten lääkkeiden ja torjunta-aineiden valmistuksessa. **Difosgeenin** myrkkyominaisuudet ovat fosgeenin kaltaiset.

<table>
<thead>
<tr>
<th>Aine Nimi ja NATO koodi</th>
<th>Kemiallinen rakenne</th>
<th>Haintu- vuus mg/m³ 20 °C</th>
<th>Sp/Kp °C</th>
<th>Huom</th>
</tr>
</thead>
</table>
| Fosgeeni CG | Cl\(\rightarrow\)C=0 Cl | 6,4\(\times\)10⁶
\(-128/
+8,2\) | ilmakaasu |
| Difosgeeni DP | Cl₂CO\(\rightarrow\)C=0 Cl | 4,5\(\times\)10⁴
\(-57/
+127\) | ilmakaasu |
| Perfluori-isobuteeni | F₃C\(\rightarrow\)C-F₂C F₃C | 8,9\(\times\)10³ kaasu | ilmakaasu |

KUVA 49 Tukahduttavien taistelukaasujen ominaisuuksia

3.1.3 Syövyttävät aineet

Syövyttävät aineet vaikuttavat paljaaseen ihoon, silmiin ja hengityksen kautta keuhkoihin. Niistä tärkein on **rikkisinappikaasu**, joka tunnetaan myös nimillä yperiitti ja keltaristi. Muita tämän ryhmän edustajia ovat **happi-** ja **seskvisi-**

sinappikaasut, typpisinappikaasut, levisiitti sekä ns. nokkoskaasuina tunnetut **fosgeenioksiimi** ja **difosgeenioksiimi**. Tietoja syövyttävistä taistelukaasuista on kuvassa 50.

<table>
<thead>
<tr>
<th>Aine Nimi ja NATO koodi</th>
<th>Kemiallinen rakenne</th>
<th>Haintu- vuus mg/m³ 20 °C</th>
<th>Sp/Kp °C</th>
<th>Huom</th>
</tr>
</thead>
</table>
| Rikkisinappikaasu HD | CIC₄H₂₂\(\rightarrow\)S CIC₄H₂₂ | 610
14,4/217 | maastokaasu neste |
| Seskvisinappikaasu Q | CIC₄H₂₂\(\rightarrow\)S CH₂ CH₂
CIC₄H₂₂S | <1
57/140 (2,7 mbar) | maastokaasu kiinteä |
| Happisinappikaasu T | CIC₄H₂₂SCH₂CH₂\(\rightarrow\)O CIC₄H₂₂SCH₂CH₂ | 2,4
10/174 (2,7 mbar) | maastokaasu neste |
| Typpisinappikaasu NH₃ | CIC₄H₂₂\(\rightarrow\)N CIC₄H₂₂ | 117
-4/256 | maastokaasu neste |
| Levisiitti L | Cl \(\rightarrow\) CH₃As Cl \(\rightarrow\) Cl | 4480
0-18/190 | maastokaasu |
| Fosgeenioksiimi CX | Cl \(\rightarrow\) C\(\rightarrow\)N-OH Cl | ei tiedossa
40/54 (28 mmHg) | naste kiinteä |

KUVA 50 Syövyttävien taistelukaasujen ominaisuuksia

Typpisinappikaasun aiheuttamat oireet ilmenevät jonkin verran hitaan minuutin kuluttua rikkisinappikaasun oireet. Kuvassa 51 on sinappikaasun iholle aiheuttamia vammoja.

KUVA 51 Sinappikaasun aiheuttamia ihovammoja

Epäpuhdas, vettä ja suolahappoa sisältävät sinappikaasu syövyttää rautaa ja terästä. Sen yhteydessä muodostuu helposti haittuvia kaasuja, jotka aiheuttavat paineen kasvua suljetussa tiloissa, kuten pommeissa, kranateissa ja varastointisäiliöissä. Syöpymistä ja hajoamista hidastavina aineina voidaan käyttää mm tetralalkyyliammoniumhalogenideja, kuten tetrametylylammuniumbromidia, sekä erääitä orgaanisia amiinijohdoksia, kuten heksametyylitetramiinia ja pyridiinia.
Sinappikaasun pysyvyys ja vaikutusaika riippuvat ensisijaisesti käytetystä levitysmenetelmästä ja sääolosuhteista. Isot sinappikaasupisarat säilyvät maastossa yhdestä kahteen päivään, talviolosuhteissa jopa viikkoja.

Levisiitti valmistetaan asetyleenistä (etyynistä) ja arseenitrikloridista alumiinitrikloridin avulla. Puhdas tuote on hajuton ja sen liuikoisuus veteen on 0,5 g/litra. Tekninen tuote on öljymäinen tummanruskea voimakkaasti pelargoniaalle tuoksuvaa neste.

3.1.4 Yleismyrkkyliset taisteluaineet eli verikaasut

Puhdas syaanivety (vetyysanidi) eli sinihappo on värittömäksi kirkas neste, jonka kiehumispiste on 25,6 °C ja sulamispiste noin -15 °C. Alhaisen kiehumispisteensä ja suuren höyrynpainensa vuoksi syaanivety haithtuu normaalissa lämpötilassa erittäin nopeasti. Levitetettäessä syaanivetyä muodostuu valkoisia pilviä, jotka haithtuvat nopeasti näkymättömiksi.

Taistelukentän olosuhteissa on juuri suuresta haittuvuudesta johtuen erittäin vaikeaa aikaansaada riittävän myrkkylisiä pitoisuksia. Kesällä syaanivety haithtuu avoi-

Syaanivety vaikuttaa soluhengitysmyrkkyynä, koska se sitoutuu voimakkaasti sytokromioksidaasi Fe³⁺ entsyymiin ja näin estää sen toiminnan. Koska veressä oleva happi ei voi siirtyä soluihin, seuraa siitä soluhengitystoiminnan salpautuminen ja hapenpuute soluiissa. Tämä puolestaan johtaa laskimoveren oksihemo- globinipitoisuuden kasvamiseen, mikä uhrin kuolinhetkellä näkyy punertavana ulkonäköä.

Alle 50 mg/m³ pitoisuudet ovat yleensä myrkyttömiä, kun taas 100 mg/m³ aiheuttaa 15 minuutissa vakavan myrkytyksen. Tappava annos syaanivetyä on noin 1 mg/ihmisen painokilo.

Halogeenisyanieista merkittävin on kloorisyani eli syaanikloridi. Se on väräätön neste, jonka kiehumispiste on 12,5 °C. Taisteluaineena sen käyttö tulee kyseeseen lähinnä seoksina muiden taistelukaasujen kanssa. Kloorisyani aiheuttaa voimakasta silmien ärätystä, ärsetsykynnyn on 2,5 mg/m³. Muuten sen myrkyllisyys on noin puolet syaanivedyn myrkyllisyystä.

Arsiini (arseenivety) ja fosfiini (fosforivety) ovat kaasumaisia syaanivetyä myrkyttömämpiä yhdisteitä. Niiden käyttö taistelukaasuina on hyvin epätodennäköistä.

3.1.5 Hermokaasut

Hermokaasut ovat orgaanisia fosforihappoestereitä. Nämä kaasujen myrkyllisyys perustuu siihen, että jo hyvin pienetkin pitoisuudet estävät hermosoluissa olevan asetyylikolinesteraasientsyymin (AChE) biologisen aktiivisuuden eli ne ovat ns. asetyylikolinesteraasi-inhibiittoreita. Hermokaasujen yleinen rakenne voidaan esittää seuraavasti:

\[R_1 = \text{alkyyli tai alkyylysubstituoitu aminoryhmä} \]
\[R_2 = \text{alkyylyryhmä} \]
\[X = \text{tavallisesti fluori, syanidi tai jokin muu} \]
\[\text{happaman yhdisteen lähde} \]
\[O = \text{happi} \]
\[P = \text{fosfori} \]
Hermokaasut ovat suhteellisen stabiileja, helposti levitettäviä ja hyvin myrkyllisiä aineita. Kaasuttyypistä riippuen ne vaikuttavat nopeasti joko ihon tai hengitysteiden kautta.

<table>
<thead>
<tr>
<th>Aine Nimi ja NATION TO koodi</th>
<th>Kemiallinen rakenne</th>
<th>Halтуvuus mg/m3 20 °C</th>
<th>Sp/Kp °C</th>
<th>Huom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sarini GB</td>
<td>O CH₃ (\text{CH}_3)</td>
<td>12000</td>
<td>-57/ +147</td>
<td>ilmakaasu neste</td>
</tr>
<tr>
<td></td>
<td>(\text{CH}_3)P-O-CH(\text{CH}_3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Somaani GD</td>
<td>O CH₃ (\text{CH}_3)</td>
<td>2000</td>
<td>-80/ +198</td>
<td>maastokaasu neste</td>
</tr>
<tr>
<td></td>
<td>(\text{CH}_3)P-O-CH(\text{CH}_3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tabuuni GA</td>
<td>O ((\text{CH}_3)_2)N-P-O-CH₂-CH₃</td>
<td>400</td>
<td>-49/ +245</td>
<td>maastokaasu neste</td>
</tr>
<tr>
<td></td>
<td>CN ((\text{CH}_3)_2)N-P-O-CH₂-CH₃</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syklosarini GF</td>
<td>O (\text{CH}_3)P-O-CH₃</td>
<td>600</td>
<td>-30/ +92/ 10 mmHg</td>
<td>maastokaasu neste</td>
</tr>
<tr>
<td></td>
<td>(\text{CH}_3)P-O-CH₃</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VX</td>
<td>5-30</td>
<td>-51/ +298</td>
<td></td>
<td>maastokaasu neste</td>
</tr>
</tbody>
</table>

KUVA 52 Hermokaasujen fysikaalisia ja kemiallisia ominaisuuksia

Hermostoon kuuluu hermosoluiun, jota ovat liittyneet nk. synaptisen kuilun väliksiin. Toiseen hermosoluun, lihasoluun tai aistielimeen. Jotta hermojärjestelmä toimisi, on hermoimpulssin ylitettävä synaptinen kuilu. Kuilun ylitäminen
tapahtuu kemiallisen välittäjääineen, asetyylilikoliinin (ACh) avulla. Kun hermoimpulssi saavuttaa synaptisen kuilun, erittyy asetyylilikoliinia, joka siirryttyään kuilun yli aiheuttaa vastinsoluun reseptorissa muutoksen, mikä puolestaan mahdollistaa hermoimpulssin siirtymisen kuilun yli. Tämän jälkeen asetyylilikolinenesterasi (AChE) hajottaa ACh:n koliiniksi ja etikkahapoksi. Hermokaasun vaikutuksesta asetyylilikoliini ei hajoakaan, mistä johtuen hermoimpulssen tapahtuu jatkuvasti. Tapahtumaketju on esitetty kuvassa 53.

KUVA 53 Hermokaasujen vaikutusmekanismo
A. Normaali toiminta, jossa asetyylikolinesteraasi pilkkoo hermoimpulssin välittäjäaineena toimivan asetyylikoliinin. Sen hajoamistuotteet varastoituvat ta- kaisin hermopäätteeseen valmiina vastaanottamaan uuden hermoimpulсин ja siir- tämään sen synapsin yli.

B. Herrmokaasu estää asetyylikolinesteraasin toiminnan, mistä seurauksena on ylimääräisen asetyylikoliinin kertyminen reseptorille.

3.1.6 Kasvintuhanoineet (herbisidit)

Kasvintuhanoineilla voi olla hyvin erilaiset toisistaan poikkeavat toksikologiset ja kemialliset ominaisuudet sekä vaikutustavat. Niiden yhteisenä piirteenä on kuitenkin kyky rajoittaa tai estää kasvia normaali kasvu ja kehitys. Ne voivat estää mm. fotosynteesin, aminohappojen biosynteesin, solun jakaantumisen ja soluhengityksen tai aikaansaada auksiinstivaikutuksen eli aiheuttaa kasvien liikakasvua.

Sotilaallisesti tärkeimpiä ovat ns. lehdenpudottaja-aineet, jotka soveltuvat erittäin hyvin viidakkosotaan ja myös huoneeviljelmien tuhoamiseen. Agent Orange- nimistä seosta on käytetty kasvullisuuden hävittämiseen. Seoksessa on 50 % 2,4,5-trikloorifensiksetikka- hapon butyylisteriä ja 50 % 2,4 dikloorifensiksetikka-hap- poa. Agent Blue- nimistä ainetta, joka koostuu dimetyyliarseenihaposta eli kakodyylihaposta, on käytetty viljapeltojen tuhoamiseen. Puuvartisten kasvien hävittämiseen voidaan käyttää Agent White- nimistä ainetta, jossa on 25 % pikloraaemia ja 75 % 2,4 dikloorifensiksetikkahapoa.

3.1.7 Toksiinit

Toksiinit ovat elävien organismien, kuten bakteerien, homeiden ja hiivojen sekä kasvien ja eläimien tuottamia myrkyjä. Monet niistä ovat äärimmäisen myryllisiä, useita kertalukkoja myryllisempiä kuin hermokaasut. Toksiinien rakenne koostuu yleensä pitkästä aminohappojen ketjuista, jonka molekyylipaino voi vaihdella muutamasta sadasta satamuhanteen. Ensinnäkin suuntaan ryhmään kuuluvat ns. peptiditoksiinit ja jälkimäiseen ns. proteiinitoksiinit.

Sotilaskäyttöön soveltuvista bakteeritoksiineista tunnetuin on ns. botuliniinus. Tämä Clostridium botulinum- bakteerin tuottama toksiini on voimakkain kaikista tun-
netuista myrkyistä. On arvioitu, että kuolettava annos suun kautta nautittuna on noin yksi mikrogramma, hengitettynä vieläkin vähemmän. Clostridium botulinum bakteeri on yksi luonnon yleisimmistä maabakteereista. Lihasäilykkeisiin jou- tuessaan se voi hapettomissa olosuhteissa kehittää toksiinia ja aiheuttaa säilykettä syöneelle botulismin.

3.1.8 Psykotaisteluaineet

Psykotaisteluaineet ovat kemiallisia taisteluaineita, jotka jo erittäin pieninä annoksina aiheuttavat käytön kohteeksi joutuneissa henkilöissä suorituskyvyn ale- nemista ja psykykisiä muutoksia. Nämä voivat olla voimakkaat pelkotilat, pakokauhu, täydellinen apatia tai ylikorostunut hyvänolontunne.

Näistä aineista tärkein on BZ eli kinuklidinyylibentsilaatti. Se lamauttaa ihmisen keskushermoston ja aiheuttaa voimakkaita hallusinaatioita. BZ on kiinteä aine, mikä rajoittaa sen käyttöä taisteluaineena.

3.1.9 Kemiallisten taisteluaineiden myryllisyys

Kemiallisten taisteluaineiden myryllisyys vaihtelee suuresti. Kaikkein myryllisin yhdiste on botulinustoksiini, joka on noin miljoona kertaa myryllisempää kuin sariini. Kyynelkaasut puoestaan ovat noin sata kertaa vaarattomampia kuin sariini. Hyvän käskyksen taistelukaasujen myrkyllisyydestä saa, kun tiedetään, että teo- riassa

- 1,5 g botulinustoksiinia
- 70 kg VX- hermokaasua
- 7000 kg sariini- hermokaasua tai
- 22000 kg sinappikaasua riittää tappamaan 5 miljoonaa ihmistä.

Kuvaan 54 on koottu tärkeimpień kemiallisten taisteluaineiden myrkyllisyyttä kuvaavia lukuarvoja. LD₉₀-arvo tarkoittaa ns. ”puoliksi tappavaa” annosta milligrammoina painokiloa kohden. Toisin sanoen tämä ainemäärä aiheuttaa kuoleman puolelle altistuneista. LC₉₀ tarkoittaa sitä pitoisuutta ilmassa milligramm-maa kuutiometrissä, jossa minuutin oleskelu aiheuttaa kuoleman 50 %:n todennäköisyydellä. Esimerkiksi, jos LC₉₀-arvo on 100 mg*min/m³, niin minuutin oleskelu 100 mg/m³ olevassa pitoisuudessa (tai kaksi minuuttia 50 mg/m³:ssa) johtaa 50 %:n todennäköisyydellä kuolemaan. Samalla tavalla IC₉₀ tarkoittaa sitä annosta mikä keskimäärin aiheuttaa taistelukyvyttömyyden (toiminta- kyvyttömyyden).
<table>
<thead>
<tr>
<th>Aine</th>
<th>ICT<sub>50</sub> mg*min/m<sup>3</sup></th>
<th>LCT<sub>50</sub> mg*min/m<sup>3</sup></th>
<th>LD<sub>50</sub> mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ärsyttävät</td>
<td>80</td>
<td>10000</td>
<td></td>
</tr>
<tr>
<td>- CN</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- CS</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Adamiitti</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Difenylikloriaansi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tukahuttavat</td>
<td>1600</td>
<td>3200</td>
<td></td>
</tr>
<tr>
<td>- Fosgeeni</td>
<td>1600</td>
<td>3200</td>
<td></td>
</tr>
<tr>
<td>Syövyttävät</td>
<td>200 (silmä)</td>
<td>1500 (heng)</td>
<td>34 (iho)</td>
</tr>
<tr>
<td>- Sinappikaasu</td>
<td>2000 (iho)</td>
<td>10000 (iho)</td>
<td></td>
</tr>
<tr>
<td>- Seskvisinappikaasu</td>
<td>40 (heng)</td>
<td>200 (heng)</td>
<td></td>
</tr>
<tr>
<td>- Happisinappikaasu</td>
<td>50 (heng)</td>
<td>200 (heng)</td>
<td></td>
</tr>
<tr>
<td>- Leviitii</td>
<td>1200 (heng)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yleismyrkylliset</td>
<td>2000 (heng)</td>
<td>4500 (heng)</td>
<td></td>
</tr>
<tr>
<td>- Veitsyanidi</td>
<td>7000 (heng)</td>
<td>11000 (heng)</td>
<td></td>
</tr>
<tr>
<td>Hermokaasut</td>
<td>50 (heng)</td>
<td>100 (heng)</td>
<td>1,4 - 1,7 (iho)</td>
</tr>
<tr>
<td>- Sariini</td>
<td></td>
<td>12000 (iho)</td>
<td></td>
</tr>
<tr>
<td>- Somaani</td>
<td>25 (heng)</td>
<td>100 (heng) 800 (iho)</td>
<td>0,7 - 4,3 (iho)</td>
</tr>
<tr>
<td>- Tabuuni</td>
<td>100 (heng)</td>
<td>400 (heng)</td>
<td>2,8 - 14,0 (iho)</td>
</tr>
<tr>
<td>- VX</td>
<td>5 (heng)</td>
<td>10 (heng) 1000 (iho)</td>
<td>0,14 - 3,1 (iho)</td>
</tr>
</tbody>
</table>

KUVA 54 Kemiallisten taisteluaineiden myrkyllisyys

3.2 KEMIALLISTEN TAISTELUAINEIDEN ILMAISU

Ilmaisun tavoitteena saada mahdollisimman nopeasti selville mitä taisteluainetta, miten, missä ja milloin on käytetty, jotta vaara-alueella olevat joukot ehtivät suojautua tai kohottaa suojautumisvalmiuttaan ajoissa. Ilmaisun perusteella voidaan määrätä saastealueen laajuus, saasteen laatu sekä vaarallisuuksast. Sääntöjen avulla arvioidaan taisteluaineen leviäminen. Ilmaisu- kynnyksen tulee olla niin alhainen, että taisteluaine ei ehdi aiheuttaa vammoja ihmiselle. Esimerkiksi hermokaasut on kyettävää ilmaisemaan pitoisuudessa, joka on alle 0,01-0,05 mg/m³. Ilmaisimien tulee myös mahdollisimman hyvin erotella eri taisteluaineet toisiastaan, eivätkä ne saa antaa esimerkiksi palo- tai räjähdykskaasustoa eivätkä polttoaineista johtuvia virhehälytyksiä.
3.2.1 Ilmaisuputket, -paperit ja -liuskat

Mieskohtaisilla ilmaisuvälillelä kyetään ilmaisemaan kaasumaisia tai pisaramuodon olevia taisteluaineita. Niiden rakenne ja toimintaperiaate on melko yksinkertainen.

Sinappikaasun ilmaisuputken (keltainen putki) ilmaisu perustuu sinappikaasun ja 4-p-nitrobenzentsyylypyridiinin väliseen reaktioon, josta tuloksena on siniviolettii väriaine.

KUVA 55 *Hermokaasujen (punainen), sinappikaasun (keltainen) ja syaanivedyn (sininen) ilmaisuputket*

Ilmaisuliuskat toimivat samalla periaatteella kuin ilmaisuputket. Liuiskoissa ol-va nesteampulli on laminoitu jäykälle pahville (sininen liuska) tai muoville (punainen liuska), johon on liimattu värireagenssilla imeytetty suodatinpaperi. Ilmaisuliuskoja on sekä hermokaasuille että syaanivedylle. Kuvassa 56 on hermokaasujen ja yleismyrkyllisten kaasujen ilmaisuliuskat.

KUVA 56 *Hermo- ja yleismyrkyllisten kaasujen ilmaisuliuskat*
3.2.2 Automaattiset kaasunilmaisimet

Automaattiset kaasunilmaisimet ovat vähitellen yleistymässä. Ilmaisimen perusosat ovat pumpu, detektori, mikroprosessoriohjattu elektroniikka ja näyttöyksikkö. Nykyiset ilmaisimet toimivat siten, että pumpu imee näyteilmää detektorin kaasuanteiden läpi, mikroprosessori käsittelee detektorivasteen ja lähettää tiedon näytölle.

Kaasunilmaisen tärkein komponentti on detektori eli se osa laitteesta, joka tunnistaa kemiallisen taisteluaneen. Tunnistustekniikka voi perustua
- ionilliikkuuvusspektrometriana
- liekkifotometrisiin menetelmiin
- entsyymikemiaaliisiin menetelmiin
- puolijohdesensoreihin tai
- optoakustisiin menetelmiin

KUVA 57 Automaaattinen kaasunilmaisin M90A
Liekkiphotometrisissä menetelmissä hermokaasujen ilman suurue perustuu fosforia ja sinappiakaajen rikkiä sisältävien yhdisteiden fotometriseen tunnistamiseen. Tässä menetelmässä näyteilma johdetaan vetyrikkaiseen liekkiin, jossa molekyylin fosfori- ja rikkiatomit pelkistyvät alkuainemuotoon ja edelleen virittyvät. Viritystilan purkautuessa aтомi emittoi sille aallonpituuudeeltaan tyyppillä säteilyä, jonka intensiteetti mitataan valomonistinputkella.

Entsyympohjaiset menetelmät perustuvat hermokaasujen kykyyn lamauttaa eli inhiboida asetyylilolinesteraasi entsyyymiä. Entsyymin aktiivisuus on suoraan verrannollinen hermokaasun pitoisuuteen, joten mitataan aktiivisuus voidaan määrittää kaasun pitoisuus.

Puolijohdesensoreiden toiminta perustuu sihiin, että kaasun kiinnityminen puolijohteen pinnalle muuttaa sen sähköistä ominaisuutta. Sensoreiden materiaalin on tavallisimmin tinaoksidit. Puolijohdesensoreita käytetään ensisijaisesti palavien kaasujen, kuten hiilimonoksidin, hiilivedyn ja alkoholin detektoinnissa sekä halvoissa alkometriessä.

Optoakustisissa menetelmissä näytekasaua säteilytetään moduloidulla monokromaattisella säteilyllä, jolloin kaasumolekyylit adsorboivat säteilyä ja virittyvät. Palautuessaan ne luovuttavat lämpöä. Lämpötilan nousu puolestaan aiheuttaa suljetussa tilassa, esimerkiksi kenoossa, tilavuuden muutoksen ja paineiskun, joka rekisteröidään herkällä mikrofonilla.

Taistelukaasujen ilman suurueen soveltuvien laitteiden tuotekehitely on vilkasta. Suurin mielekäintii kohdistuneet biosensori- ja muihin mikrosensoritekniiointed. Tavoitteena on yhä pienemmät ja toimintavarmemmatt laitteet.

3.2.3 Kaukonmonitorointi eli etämääritys

3.2.4 Laboratoriomenetelmät

Kenttäilmaisumenetelmillä tai -välineillä ei kyetä läheskään kaikkien taistelu­kaasujen ilmaisun, Mikäli halutaan päästä kattavaan ilmaisun, on turvaututtaa­va erilaisiin kemian analysylistäteisiin, joista tärkeimmät ovat kaasukromatografi ja massaspektrometri sekä niiden yhdistelmät.

Näillä laitteilla pystytään melko suurella varmuudella toteamaan kemiallisen aseen käyttö ja tunnistamaan jopa uusia agensseja.

Kaasukromatografisessa analyysissä näyte höyrytettään 200-250 °C lämpötilassa ohueen ja pitkään (tavallisesti 0,2 mm x 25 m) kapillaariputkeen eli kolonniin, jonka sisäpinta on päällystetty ohuelä polymeerikalvolla. Näytteen sisältämät kom­ponentit kulkevat putkessa 25-30 cm/s virtaavan heliumkaasun mukana kohti kolonniin toisessa päässä olevaa liekkioni­saatioilmiaisinta. Ilmaisimessa ne palavat vetyrikkaassa liekissä ja muodostavat sähköisesti varautuneita hiukkasia eli ioneja, jotka ilmaisivat havaitsee. Koska komponenttien kulkuneuvo kolonnissa riippuu mm. niiden kiehumispisteestä, ne saavuttavat ilmaisimen eri aikaan. Eten­misestä käytetty aika, josta käytetään nimitystä viipymä- tai retentioaika, on kullekin yhdisteelle luonteenomainen tunnistusparametri. Analyysin lopputulok­senä on ns. kaasukromatogrammi, jossa jokaisella tunnistettavalla yhdisteellä on omaa retentioaikaa vastaava piikki. Piikkien perusteella voidaan todeta, mitä aineita näyte on sisältänyt.

Kaasukromatografin ilmaisin voidaan korvata nk. massaselektiivisellä ilmaisimella, jolloin kyseessä on kaasukromatografi-massaspektrometri laitteisto. Laitteiston avulla yhdisteet voidaan tunnistaa sekä retentioajasta että kullekin aineelle ominaisen massaspektrin perusteella.

Myös infrapunaseptrokopiaa (IR-septrokopia) voidaan käyttää kemiallisten taisteluaineiden käytön osoittamiseen ja niiden tunnistamiseen. Varsinkin ns. FTIR-­teknikka (F= Fourier transform infrared) on hyvin käytökoelpoinen menetelmä. IR­septrokopiaassa aineiden tunnistaminen perustuu infrapuna­alueella tapahtuvan sähkömagneettisen sääteilyn absorptioon ja siitä saatavaan IR-septrootti, joka on ikään kuin tunnistettavan aineen tai molekyylin sormenjälki.

Näiden laboratoriotasoa olevien laitteiden kokoa pyritään pienentämään ja teke­mään niistä entistä helppokäyttöisempitä. Sijoittamalla laitteet esimerkiksi panssariajoneuvoihin voidaan tiedustella suunnata saastuneelle alueelle ja saada tulokset nopeasti joukkojen käyttöön ilman laboratorioutkimuksiin kuluvaa viivettä.
3.3 KEMIALLISTEN TAISTELUAINEIDEN LEVITTÄMINEN JA LEVIÄMINEN

3.3.1 Taisteluaineiden levittäminen

<table>
<thead>
<tr>
<th>Asejärjestelmä</th>
<th>Kantama (km)</th>
<th>Taisteluainemäärä (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kraanaatinheitin
sarini, somaani, VX, levisiitti</td>
<td>5 - 10</td>
<td>2 - 3</td>
</tr>
<tr>
<td>Kenttäyksi
sarini, somaani, VX, levisiitti</td>
<td>10 - 40</td>
<td>1 - 7</td>
</tr>
<tr>
<td>Rakettinheitin
sarini, somaani, VX</td>
<td>10 - 40</td>
<td>2 - 20/putki</td>
</tr>
<tr>
<td>Chjus (esim. Frog 7)
VX</td>
<td>70</td>
<td>216</td>
</tr>
<tr>
<td>Chjus (esim. Scud B)
Viskooli VX</td>
<td>300</td>
<td>555</td>
</tr>
<tr>
<td>Chjus
(esim. Al Hussein)
Sarini</td>
<td>600</td>
<td>150</td>
</tr>
<tr>
<td>Lentokone: pommi säiliö
sarini, somaani, sinappikaasu, levisiitti</td>
<td></td>
<td>50 - 300, 160 - 630</td>
</tr>
<tr>
<td>Miina
VX, sinappikaasu</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Käsikraanaatti
CS</td>
<td></td>
<td>0,1 - 0,5</td>
</tr>
</tbody>
</table>

KUVA 58 Asejärjestelmät, taisteluaineet, kantomatkat ja ainemäärit
KUVA 59 Taisteluaineiden levittämiseen soveltuvia asejärjestelmiä

KUVA 60 Sariinnammus binääriaseena

KUVA 61 Kemiallisena taisteluaineen leviäminen ja hajaantuminen
Pienimmät pisarat ja kaasumuodossa oleva aine muodostavat ns. **primääripilven** ("primary cloud"). Maanpintaan pudonnut neste, **maastokontaminaatio**, muodostaa lyhyt- tai pitkäaikaisen saastealueen, josta syntyy höyrystymisen eli haihtumisen tuloksena ns. **sekundääripilvi** ("secondary cloud"). Taisteluaineepilvien ja maastokontaminaation vaikutuksia ja vaikutusetäisyyksiä on esitetty kuvassa 62.

KUVA 62 Taisteluaineepilven ja maastosaasteen vaikutukset

Primääripilven ja maastosaasteen suhde riippuu taisteluaineesta, lämpötilasta, levitysmenetelmästä ja levityskorkeudesta. Helposti höyrystyvillä aineilla ja lämpimällä säällä primääripilven osuus on suuri. Pysyvä yhdiste puolestaan aiheuttaa suuren maastosaasteen. Maahan putoavan aineen osuutta voidaan lisätä sitkoinneilla. **Ilmakaasuksi** kutsutaan aineita, joilla huomattava osa aineesta joutuu primääripilven. **Maastokaasuja** puolestaan ovat aineet, joilla maanpintaan putoava osuus on suurempi.

Kuvassa 63 on esitetty eräiden taisteluaineiden keskimääräinen jakaantuminen primääripilven ja maastosaasteeseen. Sariini pyritään levittämään ilmakaasuna joko höyrymuodossaan tai pieninä pisaroina, jolloin se vaikuttaa pääasiassesti hengitysliemien kautta. Somaani jakaantuu sekä ilma- että maastokaasuksi. VX ja sinappikaasu ovat maastokaasuja, joista pieni osa aina vapautuu ilmaan muodos- taen primääripilven. Häviö johtuu levittämisen yhteydessä tapahtuvasta taisteluaineen hajoamisesta.

KUVA 63 Eräiden taisteluaineiden prosentuaalinen jakaantuminen primääripilven ja maastokontaminaatioon
3.3.2 Leviämiseen vaikuttavat tekijät

Meteorologiset tekijät vaikuttavat ratkaisevasti siihen, miten taisteluaaineet leveävät ilmassa. Aineiden kulkeutumisen ja hajaantumisen kannalta tärkeimpää tekiöitä ovat tuulen suunta ja nopeus, lämpötila, ilmakehän turbulentssi sekä sade.

EPÄVAKAA
* (voimakas turbulentssi)

Ilma on lämpimämpää maan läheisyydessä kuin korkeammalla. Esiintyy yleensä lämpimänä kesäpäivinä, tuulen nopeus on heikko tai kohtalainen. Pili hajoaa suhteellisen nopeasti.

NEUTRAALI
* ("normaali" turbulentssi)

Ilma on samanlämpöistä maanpinnalla ja korkeammalla. Esiintyy yleensä pilvisänä päivinä ja öisin kohtalaisella tai voimakkaalla tuulella.

VAKAA
* (heikko turbulentssi)

Ilma maan pinnalla on kylmempää kuin ylempänä. Esiintyy yleensä tyytinä kylminä öinä ja tyytinä talvipäivinä. Pili pysyy pitkään kasassa ja voi aiheuttaa pitkiä vaara-ettäisyyskiä.

KUVA 64 Sääluokan arvioiminen savuvalon avulla
Suomessa esiintyy yli 50 % neutraaleja tilanteita (sääluokka C-D) ja noin 40 % vakaita tilanteita. Maamme pohjoisesta sijainnista johtuen heikkotuuliset stabiilitilanteet ovat poikkeuksellisen yleisiä. Näitä tilanteita esiintyy eniten talvisin, pakkaskautena jopa muutamia vuorokausia yhtäjaksoisesti sekä varsinkin öisin myös muina vuodenaiikoina. Epävakaita tilanteita esiintyy erityisesti päivisin, jolloin ilmakehän turbulenssi on voimakkaimmillaan.

Stabiilisuusluokka voidaan Suomen olosuhteissa määrittää kuvan 65 perusteella. Tämä luokituskärjestelmä poikkeaa Pasquillin alkuperäisestä luokituskärjestelmästä mm. siinä, että lumipeitteen vaikutus stabiiliuteen on otettu huomioon. Luokittelu ei ole voimassa jäättömän meren yläpuolella. Sääluokan määrittämiseksi on arvioitava tuulen nopeus, pilvisyyys ja auringon korkeuskulma. Auringon korkeuskulma on saatavissa esimerkiksi Helsingin Yliopiston voosittain julkaisemasta almanakasta. Sääluokka riippuu lisäksi vuoden ja vuorokauden ajasta.

a) Talvella (maanpinta lumen peitossa):

<table>
<thead>
<tr>
<th>Tuulen nopeus 10 m:ssä</th>
<th>Päivä</th>
<th>Yö</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>35°<60</td>
<td>20°<35</td>
</tr>
<tr>
<td></td>
<td>N>7</td>
<td>N<4 N>4</td>
</tr>
<tr>
<td>< 2 m/s</td>
<td>D</td>
<td>C C</td>
</tr>
<tr>
<td>2 - 3 "</td>
<td>D</td>
<td>C D</td>
</tr>
<tr>
<td>3 - 5 "</td>
<td>D</td>
<td>D D</td>
</tr>
<tr>
<td>5 - 6 "</td>
<td>D</td>
<td>D D</td>
</tr>
<tr>
<td>> 6 "</td>
<td>D</td>
<td>D D</td>
</tr>
</tbody>
</table>

b) Kesällä (lumettomana aikana):

<table>
<thead>
<tr>
<th>Tuulen nopeus 10 m:ssä</th>
<th>Päivä</th>
<th>Yö</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>35°<60</td>
<td>20°<35</td>
</tr>
<tr>
<td></td>
<td>N>7</td>
<td>N<4 N>4</td>
</tr>
<tr>
<td>< 2 m/s</td>
<td>D</td>
<td>A B</td>
</tr>
<tr>
<td>2 - 3 "</td>
<td>D</td>
<td>B C</td>
</tr>
<tr>
<td>3 - 5 "</td>
<td>D</td>
<td>B C</td>
</tr>
<tr>
<td>5 - 6 "</td>
<td>D</td>
<td>C D</td>
</tr>
<tr>
<td>> 6 "</td>
<td>D</td>
<td>D D</td>
</tr>
</tbody>
</table>

Merkinnät: <5° = auringon korkeuskulma, N = kokonaispilvisyyys (N = 0 pilvetön ja N = 8 täysin pilvinen)

KUVA 65 Ilmakehän stabiilituden määräaminen sovellettua Pasquill-luokitusta käytäen

Ilman kosteudella ei yleensä ole suurta merkitystä taisteluaineiden käyttäytymiseen. Useat taisteluaineet hajoavat hitaasti kosteuden vaikutuksesta. Poikkeuksena ovat fosgeeni ja levisiitti, jotka hajoavat kosteassa ilmassa nopeasti. Sinappikaasun vaarallisuuksus kasvaa kosteuden lisääntyessä, koska aine imeytyy paremmin ihoon.

Sateen mukana epäpuhtaudet laskeutuvat maanpintaan eli syntyy ns. märkkälaskeuma. Sateen vaikutus aerosoleihin ja kaasuihin riippuu pääasissa niiden kemiallisesta koostumuksesta. Yleensä sateella on puhdistava vaikutus. Sateen laatu ja kesto vaikuttavat erityisesti siihen, miten hyvin ilma, kasvillisuus, erilaiset pinnat ja maasto puhdistuvat taisteluasuista. Kuussa 66 ja 67 on selvitetty sään vaikutuksia taisteluasujen pysyvyteen ja vaarallisuuteen.

<table>
<thead>
<tr>
<th>Tekijä</th>
<th>Primääripilven vaarallisuuks vähenee</th>
<th>Primääripilven vaarallisuuks lisääntyy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuulen suunta</td>
<td>Vaihteleva</td>
<td>Vakaa (taklinen asema myös tärkeä)</td>
</tr>
<tr>
<td>Tuulen nopeus</td>
<td>> 6 m/s</td>
<td>≤ 3 m/s</td>
</tr>
<tr>
<td>Säätyyppi</td>
<td>Epävakaa</td>
<td>Vaaka (inversio)</td>
</tr>
<tr>
<td>Lämpötila</td>
<td>< 0 °C</td>
<td>> 20 °C</td>
</tr>
<tr>
<td>Kosteus</td>
<td>Korpkea kosteus tekee sinappikaasun vaarallismemmaksi</td>
<td></td>
</tr>
<tr>
<td>Sade</td>
<td>Sataa</td>
<td>Ei sada</td>
</tr>
</tbody>
</table>

KUVA 66 Sään vaikutus primääripilveen
Tekijä

<table>
<thead>
<tr>
<th>Kontaminaation vaarallisuus vähenee</th>
<th>Kontaminaation vaarallisuus lisääntyy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lämpötila</td>
<td>Maanpinnan korkea lämpötila</td>
</tr>
<tr>
<td>Tuulen nopeus</td>
<td>Suuri</td>
</tr>
<tr>
<td>Säätyyppi</td>
<td>Epävakaa</td>
</tr>
<tr>
<td>Kosteus</td>
<td>Korkea kosteus tekee sinappikaasun vaarallisemmaksi</td>
</tr>
<tr>
<td>Sade</td>
<td>Kova sade</td>
</tr>
</tbody>
</table>

KUVA 67 Sään vaikutus maastokontaminaatioon

Maastotekijät, kuten mäet, metsät, pellet, maastoesteet ja rakennukset, vaikuttavat paikallisiin meteorologisiin olosuhteisiin ja siten myös kaasujen leviämiseen. Maastotekijöiden merkitys korostuu stabiilissa ja tyynessä tai heikkotuulisessa säätiäisellä, jolloin kaasupilven kulkusuuntaa ja vaikutusalueet on muutoinkin erittäin vaikea arvioida.

Ilmamassat sekoittuvat rakennettuina ja kumpuilevassa maastossa sekä metsässä tehokkaammin kuin avoimessa ja tasaisessa maastossa. Tällöin myös taisteluainepilvet hajoavat nopeammin ja niiden aiheuttamat vaarattaiset yhdistet ydet ovat lyhyempiä. Osa kaasuista ja aerosoleista kiinnittyvän piirien lehdistön ja muuhun kasvustoon, mistä johtuen vaara-aika on pitempi kuin aukealla. Maastokaasut pysyvät tehokkaana keskimäärin kolme kertaa kauemminkin metsässä kuin avoimessa maastossa.

Tiheä metsä estää taisteluainepisoroiden putoamisen maahan, mistä johtuen maasto saastuu vähemmän kuin aukealla paikalla. Pensaikkoon ja taimistoon jääneet taisteluainepisorat kuitenkin lisäävät saastumisriskiä.

Lähellä levitysaluetta olevat metsät, kapeat solat, kuopat, notkot sekä kadut ja kujat ovat paikoja, joihin taistelukaasu kerätyy säätilan ollessa vakaa ja heikkotuulinen. Taisteluaaine pysyy vaarallisena näissä paikoissa kauan. Vaara-ettäisyysdet ovat suurimpia silloin, kun taisteluainepilvi seuraa laakson reunaa tai ylittää aukean pellon tai järven.

<table>
<thead>
<tr>
<th>Aine</th>
<th>+15°C aurinkoista heikko tuuli</th>
<th>+10°C sadetta tuulista</th>
<th>-10°C aurinkoista lumipeite tyyni</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syaanivety</td>
<td>Minuutteja</td>
<td>Minuutteja</td>
<td>1 - 4 h</td>
</tr>
<tr>
<td>Sarini</td>
<td>1/4 - 4 h</td>
<td>1/2 - 6 h</td>
<td>1 - 2 vrk</td>
</tr>
<tr>
<td>Tabuuni</td>
<td>1 - 4 vrk</td>
<td>3 - 12 h</td>
<td>1 vrk - 2 vrk</td>
</tr>
<tr>
<td>Somaani</td>
<td>2 1/2 - 5 vrk</td>
<td>1/2 - 2 vrk</td>
<td>1 - 6 vrk</td>
</tr>
<tr>
<td>Sinappikaasu</td>
<td>2 - 7 vrk</td>
<td>1/2 - 2 vrk</td>
<td>2 - 8 vrk</td>
</tr>
<tr>
<td>VX</td>
<td>3 - 21 vrk</td>
<td>1 - 12 h</td>
<td>1 - 16 vrk</td>
</tr>
</tbody>
</table>

KUVA 68 Eräiden kemiallisten taisteluaineiden haihtumisaikoa

Maaston pinta vaikuttaa siihen, kuinka nopeasti taisteluaine häviää ja miten helposti se tarttuu ihmisin tai ajoneuvoihin. Koska taisteluaine höyrystyy kuivalta ja kovalta pinnalta nopeammin kuin pehmeältä pinnoilta, on saastumisriski esimerkiksi kalliolla, asfaltilla ja betonilla luonnollisesti pienempi ja lyhytaikaisempi kuin pellolla. On kuitenkin huomattava, että höyrystyminen voi aiheuttaa hetkellisesti korkean kaasupitoisuuden sekundääripilvessä.

Koska saaste imeytyy nopeasti pehmeään maahan, kuten sammaleeseen, hiekkään tai lumeen, aineen häviäminen maastosta voi olla vain näennäistä. Haihtuminen pehmeältä alustalta on noin 30% hitaampaa kuin kovilta pinnoilta. Suojautumattomille henkilöille tällaiset alueet ovat vaarallisia.

3.3.3 Leviämisen ennustaminen

 Jos säätiö on tyyni tai on täysin varmaa, että kyseessä on maastokaasulevitys, vaara-alueen särä on 10 km.

Jos tuulen nopeus ja suunta ovat selvästi havaittavissa ja kysymys on ilmakaasusta, vaaraetäisyys määritetään kuvan 69 mukaisesti. Vaara-alue piirretään Suojeluoppaassa esitettyllä tavalla.
Levitysmenetelmä

<table>
<thead>
<tr>
<th>Levitysmenetelmä</th>
<th>Etäisyys h-alueen keskipisteestä, kun säätilla on</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>epävakaa</td>
</tr>
<tr>
<td>Tykistö, krh, pienet pommit</td>
<td>10 km</td>
</tr>
<tr>
<td>Rakettinheititimet, ohjuksset, pommit</td>
<td>15 km</td>
</tr>
</tbody>
</table>

KUVA 69 Vaara-etäisyysien määrittäminen eri levitysjärjestelmissä ja eräätäytypissä

Jos levitysmenetelmää tai säätyppeitä ei tiedetä, arvioidaan vaara-alue siten, että levitysmenetelmänä on rakelinheitin ja säätilla on vakaa.

Taisteluaineiden ilmassa tapahtuvaa leviämistä voidaan ennustaa tarkemmin **tietokoneohjelmalla**. Kuvissa 70 ja 71 on esitetty leviämismalliohjelmalle laskettut ilmakaasun vaara-alueen leveys ja arviot annoskertymistä eräätäisyksillä. Taulukoita voidaan käyttää manuaalisten ennusteiden pohjana, jos tietokoneohjelma ei ole käytettävissä.

Pilven leveys on laskettu annoskertymälle 0,01 mg*min/m³. Jos aine on levitetty linja- tai aluelääteenä, on levityslinjan pituus tai alueen leveys lisättävä pilven leveyteen yhden kilometrin etäisyydelle asti. Yli yhden kilometrin etäisyydellä lähteen leveys menettää merkityksensä pilven hajoamisen ja muiden häviöiden vaikutuksesta. On huomattava, että kuvissa 70 esitetty arvot ovat keskimääräisiä arvioita, joihin vaikuttavat mm paikalliset säät- ja maasto- olosuhteet.

Säätyyppi

<table>
<thead>
<tr>
<th>Säätyyppi</th>
<th>0,5</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>20</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epävakaa</td>
<td>1,0</td>
<td>1,5</td>
<td>2,5</td>
<td>3,5</td>
<td>4,5</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>7,5</td>
<td>8</td>
<td>9</td>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td>Neutraali</td>
<td>0,3</td>
<td>0,6</td>
<td>0,9</td>
<td>1,3</td>
<td>1,7</td>
<td>2,0</td>
<td>2,2</td>
<td>2,6</td>
<td>2,8</td>
<td>3,2</td>
<td>3,5</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Vakaav</td>
<td>0,1</td>
<td>0,2</td>
<td>0,3</td>
<td>0,3</td>
<td>0,4</td>
<td>0,5</td>
<td>0,5</td>
<td>0,6</td>
<td>0,6</td>
<td>0,7</td>
<td>0,7</td>
<td>1,1</td>
<td>1,4</td>
</tr>
</tbody>
</table>

KUVA 70 Taisteluainepilven leveys eri etäisyysillä erilaisissa säättilanteissa

Esimerkiksi, jos kemiallista taisteluainetta sisältävää lautas räjähtää neutraalissa säättilanteessa, on pilven leveys 8 km päissä noin 2,8 km. Jos linjalevityksen pi- tuus on 500 m, on pilven leveys epävakaaossa säättilanteessa 0,5 km päissä 1,5 km ja 5 km päissä noin 5 km.
Kuvassa 71 esitetään keskimääräiset annoskertymät taistelukaasupilven keskiakselilla tilanteessa, jossa on tapahtunut pistemäinen 100 kg suuruinen ilmakaasulevitys, esimerkiksi taisteluainetta sisältäneen pommin räjähdyss. On muistettava, että malleilla laaditut leviämisarviot ovat keskimääräisiä arvioita, joissa on vaikea ottaa huomioon paikalliset maaston ja hetkelliset säätilan vaihtelut. Todellisuudessa taistelukaasupilvi hakeutuu sinne minne ilmavirtauksetkin, eli se seuraa maaston muotoja ja kiertää esteet.

<table>
<thead>
<tr>
<th>Säätyyppi</th>
<th>Tuulen nopeus</th>
<th>Etäisyys (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,5</td>
<td>1</td>
</tr>
<tr>
<td>Epävakaa B</td>
<td>2 m/s 7 km/h</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>5 m/s 20 km/h</td>
<td>20</td>
</tr>
<tr>
<td>Neutraali D</td>
<td>2 m/s 7 km/h</td>
<td>440</td>
</tr>
<tr>
<td></td>
<td>5 m/s 20 km/h</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>8 m/s 30 km/h</td>
<td>110</td>
</tr>
<tr>
<td>Vakaav F</td>
<td>1 m/s 4 km/h</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>3 m/s 10 km/h</td>
<td>1</td>
</tr>
</tbody>
</table>

KUVA 71 Annoskertymät pilven keskiakselilla tuulen kulkuauumnassa

Esimerkiksi, jos ilmakaasua on levitetty 100 kg neutraalissa säätilanteessa tuulen nopeuden ollessa 5 m/s, on annoskertymä pilven keskiakselilla 6 km päässä noin 2,3 mg*min/m³. Jos vakaassa säätilanteessa tuulen nopeuden ollessa 3 m/s, levitetään 200 kg ilmakaasua, on annoskertymä 10 km päässä noin 50 mg*min/m³.

3.4 ONNETTOMUUDET KEMIAN TEOLLISUUDESSA JA KEMIALLISTEN AINEIDEN KULJETUKSESSA

3.4.1 Perusteita

Maailmassa tunnetaan noin 11 miljoonaa eri kemikaalia, joista Suomessa on käytössä yli 50 000. Arvioiden mukaan joka vuosi valmistetaan noin 20 000 uutta yhdistettä.
Vaaralliset aineet luokitellaan lainsäädännössä palo- ja räjähdysvaarallisiin, terveydelle vaarallisiin sekä ympäristölle vaarallisiin kemikaaleihin.

Palo- ja räjähdysvaarallisiin kemikaaleihin kuuluvat räjähtävät, hapettavat, erittäin helposti syttyvät, helposti syttyvät ja syttyvät kemikaalit.

Terveydelle vaarallisiin kemikaaleihin kuuluvat erittäin myrkylliset, myrkylliset, haitalliset, syövyttävät, ärsyttävät, herkistävät, syöpää aiheuttavat, perimää vauroiittavat ja lisääntymiselle vaaralliset kemikaalit. Ympäristölle vaaralliset kemikaalit muodostavat oman ryhmänä.

Onnettomuus kemian teollisuudessa tai kemiallisena aineen kuljetuksessa aiheuttaa yleensä paikallisen, joskus myös alueellisen vahingon. Pahimmillaan sen vaiikutukset ovat verrattavissa kemiallisen taisteluaineen tai poltoaseen käyttöön.

Kemiallisten aineiden torjunta edellyttää tietoa niiden ominaisuuksista ja käyttäytymisestä erilaisissa tilanteissa, torjuntaan soveltuvaan kalustoon ja suojaravustusta sekä taitoa käyttää niitä. Torjunnan kannalta tärkeitä perustiedoja ovat aineen olomuoto, tiheys, liukoisuus, sytyvyys ja syttymisratak, leimahduslämpötila, räjähtävyys, reaktiivisuus sekä myrkyllisyys.

3.4.2 Onnettomuusriskit kemian teollisuudessa

Onnettomuudet kemikaaleja valmistavissa tai niitä suuressa mittakaavassa käyttävissä tuotantolaitoksissa ovat melko harvinaisia. Laki edellyttää, että turvajärjestelyt on mitoitettu riskien mukaan.

Kemiallinen vaaratilanne voi syntyä teollisuuslaitoksessa, tuotantoprosessissa tai varastossa syttyvän tulipalon, vuodon, käsittelevirheen, erehdyksen, tuholaitoinnin, asevaikutuksen tai kuljetusongelmien seurauksena. Myös huolimaton tai vastuuton kemikaalien hävittäminen voivat johtaa kemiallisen onnettomuuden syntymiseen.

Tulipalon aiheuttaman kemiallisen onnettomuuden vahingot voivat olla erittäin suuret. Kaasan ja ilman seoksen syttyminen voi aiheuttaa palovammoja ja syttyttää uusia tulipaloihin jopa satojen metrien sateellä onnettomuuskohteesta. Palon yhteydessä saattaa lisäksi vapautua myrkyllisiä kaasuja. Palo voi olla luonteeltaan myös
rääjähdyskenomainen, jolloin sen aiheuttamat paine- ja polttovaikutukset ulottuvat laajalle alueelle.

Virheellinen torjunta saattaa aiheuttaa lisävahinkoja. Tällaisia voivat olla esimerkiksi sammutusveden aiheuttamat lisävuodot sekä sammutusveden tai imeytysaineen ja kemikaalin reagoiminen siten, että syntyy myrkyllisiä kaasuja.

3.4.3 **Onnettomuusriskit kemiallisten aineiden kuljetuksissa**

Vaarallisten aineiden **kuljetukset** ovat suurempia riskeiä kuin kemian teollisuus itse. Vuosittain tapahtuu kymmenkunta onnettomuutta, joissa vaarallista ainetta kuljettava ajoneuvo on mukana.

Maanteillä kuljetetaan vaarallisia aineita vuosittain noin 10 miljoonaa ja rautateillä noin 6 miljoonaa tonnia. Meriteitse erilaisia liuotinkemikaaleja kuljetetaan yli 4 miljoonaa tonnia ja öljyjuotteita 15-20 miljoonaa tonnia. Kaikista kemikaali-kuljetuksista bensiinin ja polttoöljyn osuus on yli puolet ja maantiekuljetuksista noin 80 %. Myrkylisten ja palavien kaasujen osuus maanteillä kuljetettavista kemikaaleista on noin 3 % ja rautateillä kuljetettavista noin 7 %. Räjähtävien aineiden osuus on vain noin 0,1 %.

Noin 60 %:ssa kaikista onnettomuustapauksista mukana on jokin kymmenestä enten kuljetetusta aineesta eli polttoöljy, dieselöljy, bensiini, nestekaasu, rikkihappo, ammoniakki, kloori, tyyppihappo, suolahappo tai natriumhydroksidi.

Yleisin onnettomuuden syy sekä maanteillä että rautateillä on kuljetussäiliön pohjventtiiliin **vuotaminen**. Muita tyyppisiä onnettomuksia maanteillä ovat kolarit ja ulosajot, joiden seurauksena kemikaalisäiliö repetyy. Rautateilla onnettomuudet sattuvat useimmiten ratapihoilla. Yleisin vahinkotyyppi on säiliövaunun päädyyn vaurioituminen törömyksessä.

3.4.4 Tietoja eräistä kemikaaleista, niiden leviämisestä ja vaikutuksista

Vaarallisimpia eniten kuljetetuista kemikaaleista ovat ammoniakki, kloori ja rikkidioksidi. Tietoja näiden ominaisuuksista on kuvassa 72.

<table>
<thead>
<tr>
<th>Ominaisuus</th>
<th>Kloori</th>
<th>Ammoniakki</th>
<th>Rikkidioksidi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kiehumispiste</td>
<td>-34 °C</td>
<td>-33 °C</td>
<td>-10 °C</td>
</tr>
<tr>
<td>Tiheys</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- kaasu (ilma = 1)</td>
<td>2,6</td>
<td>0,6</td>
<td>2,3</td>
</tr>
<tr>
<td>- neste (vesi = 1)</td>
<td>1,6</td>
<td>0,7</td>
<td>1,5</td>
</tr>
<tr>
<td>Tilavuussuhde 1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- kaasu/neste</td>
<td>400</td>
<td>750</td>
<td>500</td>
</tr>
<tr>
<td>Höyrystymislämpö</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- (vesi = 1)</td>
<td>0,13</td>
<td>0,6</td>
<td>0,17</td>
</tr>
<tr>
<td>Höyrynpaine (ylipaine)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- +20 °C</td>
<td>5,5 bar</td>
<td>7,6 bar</td>
<td>2,3 bar</td>
</tr>
<tr>
<td>- 0 °C</td>
<td>2,6 bar</td>
<td>3,3 bar</td>
<td>0,6 bar</td>
</tr>
<tr>
<td>- 20 °C</td>
<td>0,8 bar</td>
<td>0,9 bar</td>
<td>-</td>
</tr>
<tr>
<td>Liukoisuus veteen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huono</td>
<td>Erittäin hyvä</td>
<td>Hyvä</td>
<td></td>
</tr>
</tbody>
</table>

1) Esimerkki: 1 litrasta nestekloria höyrystyy ilmakehän paineessa noin 400 l kloorikaasua

KUVA 72 Tietoja kloorin, ammoniakin ja rikkidioksidin ominaisuuksista

Ammoniakki käytetään myös vesiliuoksena (NH₄OH), jolloin se ei ole palava. Liuoksesta haihtuvat kaasut ovat kuitenkin lähes yhtä vaarallisia kuin kaasu-
muodossa oleva ammoniakki. Ammoniakkipitoisuksien vaikutuksia ihmiseen on esitetty kuvassa 73.

<table>
<thead>
<tr>
<th>Pitoisuus mg/m³</th>
<th>Pitoisuus ppm</th>
<th>Vaikutus ihmiseen</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,5 - 35</td>
<td>5 - 50</td>
<td>Haju tuntuu</td>
</tr>
<tr>
<td>70</td>
<td>100</td>
<td>Lievä nenän ja nielun ärsytys</td>
</tr>
<tr>
<td>200 - 350</td>
<td>280 - 500</td>
<td>30 min - 1 h oleskelu mahdollinen</td>
</tr>
<tr>
<td>300</td>
<td>420</td>
<td>Välitön nielun ärsytys, yskittää</td>
</tr>
<tr>
<td>500</td>
<td>700</td>
<td>Silmien ärsytys, kynelivuotoa</td>
</tr>
<tr>
<td>1200</td>
<td>1700</td>
<td>Voimakas yskän ärsytys, 30 min oleskelu aiheuttaa keuhkovammoja</td>
</tr>
<tr>
<td>2500</td>
<td>3500</td>
<td>30 min - 1 h oleskelu hengenvaarallinen</td>
</tr>
<tr>
<td>3500 - 7000</td>
<td>5000 - 10000</td>
<td>10 - 15 min oleskelu tappava</td>
</tr>
</tbody>
</table>

KUVA 73 Ammoniakin vaikutus ihmiseen

<table>
<thead>
<tr>
<th>Pitoisuus mg/m³</th>
<th>Pitoisuus ppm</th>
<th>Vaikutus ihmiseen</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,3 - 3</td>
<td>0,1 - 1</td>
<td>Haju tuntuu</td>
</tr>
<tr>
<td>10 - 20</td>
<td>3 - 7</td>
<td>Voimakas haju, silmien ja nenän ärsytystä, 1 h oleskelu ei aiheuta vammoja</td>
</tr>
<tr>
<td>50</td>
<td>15</td>
<td>Välitön silmien, nenän ja nielun ärsytys, kynelivuotoa ja yskää</td>
</tr>
<tr>
<td>100</td>
<td>30</td>
<td>Tukahduttava yskä, rintakipua</td>
</tr>
<tr>
<td>150 - 300</td>
<td>50 - 100</td>
<td>Keuhkovammat mahdollisia</td>
</tr>
<tr>
<td>3000</td>
<td>1000</td>
<td>Välitön tukhhtumisvaara</td>
</tr>
</tbody>
</table>

KUVA 74 Kloorikaasun vaikutus ihmiseen
Rikkidioksidi on väritön, pistävänhajuinen, voimakkaasti syövyttävä, ilmaa raskaampi, myryllinen kaasu. Alle -10 °C:n lämpötilassa rikkidioksidi on nesteenä. Rikkidioksidia käytetään valkaisuun paperi-, selluloosa- ja tekstiileollisuudessa sekä pieniä määräitä muussa tuotannossa esim. sokerin valmistuksessa. Rikkidioksidin kuljetetaan jäädytetynä, ei kuitenkaan paineenalaisena. Vuosittainen kuljetusmäärä on noin 50 000 tonnia.

Rikkidioksidi aiheuttaa suurina pitoisuuksina keuhko- ja ihovammoja. Se syövyttää kosteana useimpia metalleja ja rakennusaineita sekä vahingoittaa tekstiilejä ja nahkaa. Edellämainitusta syystä myöskään rikkidioksidituolodon yhteydessä ei saa käyttää vettä. Tietoja rikkidioksidin vaikutuksista ihmiseen on esitetty kuvassa 75.

<table>
<thead>
<tr>
<th>Pitoisuus mg/m³</th>
<th>Pitoisuus ppm</th>
<th>Vaikutus ihmiseen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 2,5</td>
<td>0,4 - 1</td>
<td>Haju ja hapan maku havaitavissa</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>Voimakas haju</td>
</tr>
<tr>
<td>13 - 30</td>
<td>5 - 11</td>
<td>Välitön silmien, nenän ja nielun ärsytys</td>
</tr>
<tr>
<td>125 - 250</td>
<td>50 - 100</td>
<td>Tukahduttava yskä</td>
</tr>
<tr>
<td>400 - 500</td>
<td>150 - 200</td>
<td>30 min - 1 h oleskelu hengenvaarallinen</td>
</tr>
<tr>
<td>1000 - 1300</td>
<td>400 - 500</td>
<td>Muutaman minuutin oleskelu hengenvaarallinen</td>
</tr>
</tbody>
</table>

KUVA 75 **Rikkidioksidin vaikutus ihmiseen**

Vaarallisten aineiden leviämisen arviointiin voidaan käyttää karkeaa ennustusmenetelmää, josta esimerkki on kuvassa 76 tai tietokonemalleja, joista on esimerkit kuivassa 77 ja 78.

![Kuva 76](image)

Jo noin 10 minuutin altistuksen vaikutukset ovat vakavia!

KUVA 76 **Karkea ennustusmenetelmä vaarallisten aineiden leviämiseksi**
Nesteammoniakkia vuotaa 11,6 kg/s, joka kaikki höyrystyy. Sääluokka F, selkeä yö, tuulen nopeus 2 m/s. Lähialueella (0-600 m) kaasu leviää 65°:n sektorissa.

KUVA 77 Ammoniakin leviäminen ilmassa

Nesteklooria vuotaa 6,3 kg/s, joka kaikki höyrystyy. Sääluokka D, sää on pilvinen ja tuulen nopeus on 5 m/s. Kaasu leviää 16°:n sektorissa.

KUVA 78 Kloorin leviäminen ilmassa
Nestekasaus on joko propaania (C₃H₈), butaania (C₄H₁₀) tai niiden seosta. Pahdas kaasu on hajuton ja väriöitä, mutta ei myökkellinen. Nestekasaun vaarallisuus perustuu sen syttymisherkkyteen, suureen palamisnopeuteen sekä siihen, että se syrjäyttää suljetuissa tiloissa hapen ja voi tätä aiheuttaa kuoleman. Kaasuvuodon tunnistamiseksi siihen lisättään nykyisin hajuaineita.

1) Nestekasuvuodon liekit kuumentavat säiliötä kaasutilan kohdalta. Varoventtiili on avautunut.

2) Kuumentunut säiliö repeää ja bleve hajoittaa sen sisällön höyrypisarapilveksi.

3) Pilvi palaa tulipallona.

KUVA 79 Nestekasuräjähdyksen syntyminen
4.1 YLEISTÄ

Polttoaseella pyritään vastustajan joukkojen tuhoamiseen tai lamauttamiseen, pakottamaan niiden liike oman toiminnan kannalta edullisille alueille, aiheuttamaan niissä pakokauhua sekä sitomaan niitä tulipalojen sammuttamiseen. Aseella voidaan tuhota myös vastustajan asejärjestelmät ja materiaalia.

Polttoase koostuu syttymisen aiheuttavasta polttotaisteluaineesta, aineen kuljettamiseen tarvittavasta sääliöstä, kuorma-ammuksesta, pommista, kranaatista, raketista, ohjuksesta, miinasta tai puhalluslaitteesta sekä aseesta, asejärjestelmästä tai välineestä, jolla polttotaisteluaine saatetaan maaliin. Valikoima ulottuu yksinkertaisesta polttopullosta nykyaikeiseen kuorma-ammukseen. Ase voidaan valita maalin ja halutun vaikutuksen perusteella.

Samanaikaisesti polttoaseen kanssa käytettävät sirpalevaikutteiset aset vaikeuttavat tulipalojen sammuttamista ja aiheuttavat lisää tappioita. Jotkut polttotaisteluaineet ovat sellaisenaan myrkyllisiä tai synnyttävät palassaan myrkyllisiä kaasuja, mikä edellyttää samanaista suojaumistaa kuin kemiallisia aseita vastaan.

4.2 POLTTOTAISTELUAINENET

Polttoaisteluaineet ovat nestemäisiä tai kiinteitä kemiallisia yhdisteitä, jotka palassaan vapauttavat paljon lämpöä. Aineiden vaatimuksia ovat mm. hyvä syttyvyys, ihanteellinen ja tarvittaessa säädeltävissä oleva palamisaika, korkea palamislämpötila, hyvä tarttuvuus, vähäinen haihtuvuus, soveltuvuus eri asejär-
jestelmille, helppo käsiteltävyys, vaikea sammutettavuus sekä ominaisuuksien säilyminen erilaisissa sää- ja kosteusoloissa.

Polttotaisteluaineet voidaan jakaa
- maaöljypohjaisiin
- metallisiin
- itsestään syttyviin (pyroforisiin) sekä
- itsestään palaviin (pyrotekniisiin) polttotästeluaineisiin.

Jako ei ole yksiselitteinen. Metallisia polttotästeluaineita voidaan käyttää maaöljypohjaisten polttotästeluaineiden lisääineina tai ne voivat kuulua joko itsestään syttyviin tai itsestään palaviin polttotästeluaineisiin. Kehittyneimmät polttotästeluaineet ovatkin useimmiten edellämainittujen yhdistelmiä.

4.2.1 Maaöljypohjaiset polttotästeluaineet

Yksinkertaisimmillaan maaöljypohjainen polttotästeluaine on öljyn jalostustuote kuten bensiini, petrooli, dieselöljy, polttöljy, bentseeni tai näiden sekoitus. Näiden helposti saatavissa olevien, halpojen, hyvin paloa levittävien ja ahtaisiin paikkoihin tunkeutuvien aineiden palamislämpötila on 800-1000 °C. Huonoja ominaisuuksia ovat nopea palamine sekä vähäisestä viskositeettista johtuva huono soveltuvuus liekinheittimien ja sellaisiin pommeihin, joissa syttytimenä käytetään räjähdyspanoksia.

Sitkostetut maaöljypohjaiset polttotästeluaineet tunnetaan paremmin nimillä napalm ja pyrogeeli. Niiden perusaineena käytetään öljyn jalostustuotteita, joiden viskositeettia, tarttuvuutta, palamisaitaa, palamislämpötilaa ja muita palamisominaisuuksia parannetaan erilaisilla lisääineillä.

Napalmien paloineina ovat yleisimmin bensiini, bentseeni tai kerosiini. Tarttuvuutta ja viskositeettia lisäävänä aineina käytetään kemikiaa, hartsia, öljyn jalostuksessa syntyiä jätteaineita tai muovia. Palamislämpötilaa kohotetaan esimerkiksi palmitiini-, nafteeni- ja oleinihappojen alumiinisuoloilla ja lisähapettimilla. Palamislämpötila on 1000-1200 °C.

Napalmien ominaisuuksista mainittakoon korkea lämmöntuotto, suhteellisen pitkä (10-15 min) palamisaika, hyvä tarttuvuus ja tunkeutuvuus ahtaisiin paikkoihin, helppo syttyvyys, kyky palaa myös vedessä, suuri hapenkulos sekä voimakas savun ja hiilimonoksidin muodostus.
Suuren napalm-määrän levitessä räjähdyksen vaikutuksesta hulmahtaa koko roiskealue muutaman sekunnin ajan kiivaasti palavaksi tulimereksi. Samalla syntyy hetkellinen happivaje. Palon alkuvaiheessa liekit kohoavat 4-5 metrin korkeuteen. Tukahduttaminen on ainoa tehokas keino sammuttaa napalm-palo.

Teoreettisesti laskettuna 250 kg:n napalmommin aiheuttaman paloalueen koko on noin 2500 m². Palaessaan täydellisesti pommi kuluttaa ilmaa noin 3000 m³ tai puhdasta happea noin 600 m³. Taistelijan käytettävissä olevan ilman tilavuus kyseisellä paloalueella on noin 6000 m³, joten kiivaimman palamisen aikana happipitoisuus laskee noin 10 %. Tämän seurauksena ihminen menettää tajuntansa jo runsaan minuutin kuluttua. Palamisen yhteydessä syntyy myös myrkyllistä hiilimonoksidia. Jo 1 %:n häkäpitoisuus aiheuttaa yhdentäen - kahden minuutin kullessa tajunnan menetyksen ja kuoleman.

Taisteluhautta tai katettu potero eivät anna riittävästi suojaa, mikäli ne jäävät napalmhyökkäykseen keskelle. Lämpötila kohoa niissä 500 jopa 600 °C:een, happipitoisuus laskee 10-15 %:iin ja hiilimonoksidipitoisuus nousee noin 1 %:iin. Myöskään ajoneuvot panssarivaunuja lukuun ottamatta eivät anna riittävästi suojaa napalmommitusta vastaan. Suojautuminen korouun on ainoa tapa selviytyä hengissä napalmhyökkäyksestä.

Napalmeja käytetään palopommeissa, ilmasta pudotettavissa säiliöissä, liekinheitti-missä ja kraanateissa.

Pyrogeelit ovat napalmien kaltaisia ja niiden tavoin toimivia polttoseoksia. Viskositeettia parantavin muovien lisäksi ne sisältävät metallia, joista tärkeimmät ovat magnesium ja alumiini, hapettimia kuten natriumnitraattia sekä hiiltä ja öljyteollisuuden jätteaineita. Palamislämpötila on yleensä 1600-1800 °C, mutta voi korkeimmillaan olla jopa yli 2000 °C.

<table>
<thead>
<tr>
<th>Nimi</th>
<th>Liuotinaine</th>
<th>Lisääineet</th>
<th>Ulkonäkö</th>
<th>Väri</th>
<th>Palamislämpötila °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-1</td>
<td>Napaim</td>
<td>91-98 %</td>
<td>2-9% M1 tai 4-8% M2</td>
<td>Siirappimainen hytelö</td>
<td>Ruskehava 800-1000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M-2</td>
<td>Napaim</td>
<td>Bensiini/kero-siini 91-96 %</td>
<td>4-9% M-2</td>
<td>Siirappimainen hytelö</td>
<td>Ruskehava 800-1000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M-4</td>
<td>Napaim</td>
<td>Bensiini/kero-siini 89-90 %</td>
<td>10-11% M-1 tai M-4</td>
<td>Siirappimainen hytelö</td>
<td>Kellertävä, läpunukusta 800-1000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IM-</td>
<td>Napaim</td>
<td>Bensiini 89-90 %</td>
<td>10-11% IM</td>
<td>Muovimainen, tahmea hytelö</td>
<td>Vaalean keltainen yli 1000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-</td>
<td>Napaim</td>
<td>Bensiini 25 % ja bentseeni 25 %</td>
<td>50% Polystyreeni</td>
<td>Tahmea, siirappimainen hytelö</td>
<td>Ruskehava noin 1200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PT-1</td>
<td>Pyrogeeli</td>
<td>Bensiini 30-60 %</td>
<td>40-70% PT-1</td>
<td>Tahmea, melkein kiinteä seos</td>
<td>Musta 1 600</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PT-2</td>
<td>Pyrogeeli</td>
<td>Bensiini 60 %</td>
<td>40% PT-2</td>
<td>Tahmea, muovimainen hytelö</td>
<td>Tumman harmaa 1 600-2 000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FTV</td>
<td>Pyrogeeli</td>
<td>Bensiini 60 %</td>
<td>40% PTV</td>
<td>Tahmea, melkein kiinteä seos</td>
<td>Vaalean keltainen 1 200-1 600</td>
</tr>
</tbody>
</table>

M-1 = 50% palmitiinihappojen alumiinisuoloja, 25% nafteiniinhappojen alumiinisuoloja ja 25% oleiinhappojen alumiinisuoloja

M-2 = 95% M-1 ja 5% kuivaa piigeeliä (silikageeli)

M-4 = 98% kookoshappojen alumiinisuoloja ja 2% kuivaa piigeeliä (silkonia)

IM = 50% isobutyylimetakrylaattia, 30% steariinhappoa ja 20% kalsiumoksidia

PT-1 = 3-5% isobutyylimetakrylaattia, 10% magnesiumulveria, 3% kerosiniak että asfalttia, aktivihiihtä ja natriumitraattia

PT-2 = 5% isobutyylimetakrylaattia, 10% magnesiumulveria ja asfalttia, öljyyn sekoitettua kivihihtä ja haliumitraattia

PTV = 5% polybutadienia, 6% natriumitraattia ja 28% natrium- tai magnesiumulveria ja p-aminofenolia

KUVA 80 Tietoja napalmeista ja pyrogeeleista

Aluskasvillisuuden ja miinoitteiden raivaamiseen kehitettyä aerosolipommi (FAE) voidaan joissakin tapauksissa käyttää poltoaseen tavoin. Ilmaan sekoittunut aerosolimuodon oleva butaanin ja propaanin seos räjäytetään sytyttyspanoksella. Onnistuneessa räjähdyksessä syntyvää painealto varioitaa henkilöstöä ja materiaalia, raivaa aluskasvillisuuden sekä räjäyttää sellaiset miinan, joiden sytytin ei kestä painevaikutusta.

Epäätydellisessä syttymisessä syntyy nopeasti leimahdattava tulipallo, jota voidaan verrata nestekasausaikiihön räjähämiseseen. Palovamma-alue saattaa ulottaa jopa 300-400 metrin etäisyydelle räjähdyispisteestä. Aerosolipommin teknikoukka on vaikea hallita eikä se vieleä ole kenttäkäytössä. Säätetukiöllä on keskeinen osuus aerosolipilven muodostumiseen ja pysymiseen.
4.2.2 Metalliset polttotaisteluaineet

Metallisia polttotaisteluaineita käytetään huonosti palavien kohteiden polttamiseen ja rakennusten syttyttämiseen. Jotta ne saataisiin syttymään, on niitä kuumennettava voimakkaasti. Syttyessään ne reagoivat hapen kanssa ja hulmahtavat kiivaasti palaviin liikkeihin. Metallit ovat yleensä polttotaisteluaineen lisääineita tai metalliseoksia, puhtaina niitä ei juurikaan käytetä, vaikka ne palavatkin kuumalla liekillä ja tuottavat paljon lämpöä.

Tunnetuin metallisista polttotaisteluaineista on **magnesium**. Syttymislämpötilan (623 °C) saavuttamisen jälkeen magnesium reagoi kiivasti hapen kanssa, jolloin lämpötila kohoaa nopeasti kiehumispisteeseen, joka on 1100 °C. Liekin lämpötila voi kohota jopa 2000 °C:een.

Alumiini ei sellaisenaan sovellu polttotaisteluaineeksi. Sitä käytetään kuitenkin monien polttoseosten lisääineena kohottamaan palamislämpötilaa ja siten paranamaan niiden tehoa. **Natriumia, kaliumia, lithiuma, kaltsiumia ja bariumia** ei myöskään sellaisinaa käytetä polttotaisteluaineina, vaan erityisesti napalmien ja pyrogeelien lisääineina.

Metalliseoksista tunnetuin ja käytetyn on **elektronmetalli**. Siinä on magnesiumia noin 90 %, alumiinia noin 10 % ja kuparia noin 1 %. Elektronmetallit syttytetään yleensä termaattila, joten se voi olla esimerkiksi termaattipommin kuoriaineena. Seos on vaalea hopeanvärisen. Se palaa hitaasti, häikäisevällä, sinertävän valkoisella liekillä. Palamislämpötila on noin 2800 °C, termaatin kanssa jopa 3000 °C. Tietoja metallisista polttotaisteluaineista on kuvassa 81.

<table>
<thead>
<tr>
<th>Aine</th>
<th>Käyttö</th>
<th>Ominaisuudet</th>
<th>Väri</th>
<th>Palamislämpötila °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alumiini (Al)</td>
<td>Jauheena, rakeiseena tai seosmetalliina muiden polttotaisteluaineiden lisääineena</td>
<td>Kevyt metalli, joka palassa tuottaa runsaasti lämpöä</td>
<td>Vaalea, hopeanvärinen</td>
<td>yli 2000 sp. 659 kp. 2270</td>
</tr>
<tr>
<td>Magnesium (Mg)</td>
<td>Kuten yllä</td>
<td>Kuten yllä</td>
<td>Vaalea, hopeanvärinen</td>
<td>noin 2000 sp. 650 kp. 1100</td>
</tr>
<tr>
<td>Alkali- ja maaalkalimetallit (Na, K, Li, Ca ja Ba)</td>
<td>Muiden polttotaisteluaineiden lisääineina</td>
<td>Kuten yllä</td>
<td>Leikkauspinnat vaaleita, hopeanvärislä</td>
<td></td>
</tr>
<tr>
<td>Elektronmetalli - 89 % Mg - 10 % Al - 1 % Cu</td>
<td>Esim termaattipommin kuoriaineena</td>
<td>Kevyt metalliseos</td>
<td>Vaalea, hopeanvärinen</td>
<td>2800-3000</td>
</tr>
</tbody>
</table>

KUVA 81 Tietoja metallisista polttotaisteluaineista
4.2.3 Itsestään syttyvät (pyroforiset) polttotaisteluaineet

Pyroforiset polttotaisteluaineet sytyttävät itsestään joutuessaan kosketuksiin ilman hapen kanssa. Tämän vuoksi niitä käytetään hyvin usein muiden polttotaisteluaineiden sytyttämiseen.

Valkoinen fosfori on tunnetuin itsestään syttyvä polttotaisteluaine. Se on vahamainen, kiinteä, vaalean keltainen valkosipulille tuoksuvu aine. Syttymislämpötila riippuu aineen raekoosta - mitä pienempi koko on, sitä alhaisempi on syttymispiste. Hyvin hienojakoinen valkoinen fosfori syttyy lähellä 0 °C lämpötilaa, yleensä syttymislämpötila on kuitenkin 40-60 °C. Aine palaa kellertävällä liekillä kauan ja samalla kehittyy fosforipentoksidisavua. Palamislämpötila on 800-1200 °C.

Aine liukenee eräisiin orgaanisiin liuottimiin ja öljyihin, mutta ei veteen. Itsestään syttymisestä käytettiin aine onkin varastoitava veden alla.

Valkoista fosoria ei yleensä käytetä sellaisenaan, vaan palavien nesteiden, napalmien ja pyrogeelien tai rikkiihiilien syttyttämisaineena. Kraanaatin tai palapommin räjähtämisien seurauksena laajalle alueelle levinnyt varsinaisen polttotaisteluaine syttyetään valkoisella fosforilla.

Mekaanisten ja palamiseen vaikuttavien ominaisuuksien parantamiseksi valkoinen fosforin rakeet voidaan sitoaa (plastisoida) kumista valmistetun geelin avulla kiinteäksi aineeksi. Näin valmistettu aine säilyttää syttymisominaisuutensa ja tarttuu hyvin vinoille ja pystysuorille pinnoille.

Valkoinen fosfori on myrkyllistä. Paljaalle iholle se aiheuttaa vaikeasti parantuvia palohaavoja ja myrkytyksen, joka pahimmassa tapauksessa saattaa johtaa kuolemaan.

Palava fosfori voidaan sammuttaa vedellä, mutta on huomattava, että kuivuttuaan se syttyy uudelleen.

Trietyyli aluminiinä käytetään puhtaana tai sakteuttuna sekä maaöljypohjaisten että metallisten polttotaisteluaineiden lisääineen.

Sakeuttamiseen voidaan käyttää polyisobutenia, polymeroituja hiilivetyjä, aktiivihiltää, piidioksidia, kemiaa, parafiinia ja muita elastisia yhdisteitä. Käyttämällä sakeuttettua trietyyli aluminiinia yhdessä maaöljypohjaisten ja metallisten polttotaisteluaineiden kanssa voidaan valmistaa tehokkaita seoksia mitä erilaisimpiin tarkoituksiin ja mitä erilaisimmille aseille.

Polttotaisteluaineena tai sen syttämiseen voidaan käyttää myös muita metallisia yhdisteitä. Näitä ovat mm. alkalimetallialkyyli-, sinkkialkyyli- ja boorialkyyli-yhdisteet.

Myös zirkonium kuuluu itsestään syttyviin metallisiin polttotaisteluaineisiin. Se on kiinteä, teräkseltä näyttävä metalli. Hienojakoinen zirkonium syttyy iskusta ja palaa erittäin kuumalla liekillä.

Zirkoniumin palo-ominaisuksia voidaan parantaa sekoittamalla sitä esimerkiksi titaanin, lyijyn tai ceriumin kanssa.

Uraanilla on samankaltaiset ominaisuudet kuin zirkoniumilla.

Ferroseeni on yksi uusimmista polttotaisteluaineista. Se sisältää 80-90 % n-butyyliferoseenia, 5-10 % aktiivihiltää, 2-2,5 % ammoniumperklorattia, 2,5-5 % alumiininjauhetta sekä seosaineina piitä ja kalsiumfosfaattia. Alumiini ja ammoniumperkloratti luovuttavat palamisessa tarvittavan energian, aktiivihiltä antaa suuren pinta-alansa ansiosta riittävästi happea ja ferroseeni toimii katalyyttina. Yhdiste on monin verroin tehokkaampi kuin esimerkiksi napalm. Tietoja itsestään syttyvistä polttotaisteluaineista on kuvassa 82.
<table>
<thead>
<tr>
<th>Aine</th>
<th>Lisäaineet</th>
<th>Käyttö</th>
<th>Väri ja ulkonäkö</th>
<th>Palamislämpötila °C</th>
<th>Huom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valkoinen fosfori (P₄)</td>
<td>Napalmin tai pyrogeelin syytysaineena</td>
<td>Vaalean keltainen, valkosipulin hajuiinen, vahamainen aine</td>
<td>800 - 1 200</td>
<td>Myrkyllinen, ei liukene veteen</td>
<td></td>
</tr>
<tr>
<td>Plastisoitu valkoinen fosfori</td>
<td>Luonnon/synteettiläinen kumi</td>
<td>Kuten yllä</td>
<td>Kellertävä</td>
<td>1 200</td>
<td>Tarttuva</td>
</tr>
<tr>
<td>Trietyyli-alumiini (TEA)</td>
<td>Napamin, pyrogeelin tai metallisten polttotaisteluaineiden lisäaineena</td>
<td>Värítön, juokseva neste</td>
<td>2 300</td>
<td>Palaa veden halkaisessa, myrkyllinen</td>
<td></td>
</tr>
<tr>
<td>Sakeutettu TEA</td>
<td>Polyisobutyleeni ym elastiset yhdisteet</td>
<td>Kuten yllä</td>
<td>Kellertävä, siirappimainen hyytelö</td>
<td>2 000 - 2 300</td>
<td>Kuten yllä</td>
</tr>
<tr>
<td>Zirkonium (Zr)</td>
<td>Räjähtävien ammusten lisääineena</td>
<td>Hopeanharmaa jauhe</td>
<td>Sp 1 852 Kp 3 578</td>
<td>Hienojakojin, syttyy iskusta</td>
<td></td>
</tr>
<tr>
<td>Uraani (U)</td>
<td>Kuten yllä</td>
<td>Hopean valkoinen, erittäin kova metalli</td>
<td>Sp 1 132 Kp 3 818</td>
<td>Muodostaa ilman kanssa räjähtävä seoksia, myrkylinen, radioaktiivinen</td>
<td></td>
</tr>
<tr>
<td>Ferroseeni</td>
<td>Aktiivihili, ammoniumperkloratti, alumiini, pii</td>
<td>Palopommeissa</td>
<td>Keltainen pulveri</td>
<td>Sp 172 Kp 249</td>
<td>Lämmitettäessä syntyy myrkyllisiä hajoamistuotteita. Ei liukene veteen</td>
</tr>
</tbody>
</table>

KUVA 82 Tietoja itsestään syttyvistä polttotaisteluaineista

4.2.4 Itsestään palavat (pyrotekniset) polttotaisteluaineet

Pyrotekniset polttotaisteluaineet ovat palavia seoksia, jotka sisältävät polttotaineen ja hapen. Koska ne sisältävät reaktioon tarvittavan hapen, voi palamineen tapahtua myös hapettomissa olosuhteissa ja tiloissa.

Tunnetuin perusseos on nimeltään **termiitti**. Laajasti käsitettynä sillä tarkoitetaan jauheta tai raemuodossa oleva metallin ja jonkin toisen metallin oksidien muodostamaa seosta. Esimerkiksi rauta-alumiinitermiitti sisältää 21-29 % alumiinia ja 71-79 % rautaoksidia.
Sotilaskäyttöön tarkoitettu tavallisesti pulverimaisena tai rakeisena oleva termiitti puristetaan kiinteäksi kappaleeksi, jolloin se kestää paremmin iskuja, painetta ja muita mekaanisia vaikutuksia eikä syty niin herkästi kuin pulverimainen termiitti.

Termiitin palo-ominaisuksi on parannettu lisäämällä siihen hartsia, kiinteää hiilihappoa, tärpätin tislaustuotetta eli kolofonia, rikkiä, bariumnitraattia ja alumiinia. Tällaisista seoksista käytetään yleisnimitystä termaatti. Perustermaatti sisältää 60 % termiittiä ja 40 % valumassaa, jossa puolestaan on 25 % bariumnitraattia, 5 % alumiinilastuja sekä edellämainittuja sideaineita.

Uutuutena mainittakoon seos, joka sisältää termiittiä, bariumnitraattia, ferroscopein ja magnesiumia tai sinkkiä, kutakin noin 25 %, sekä lämpöä tuottavana lisääneenä hiilipitoisina sideaineita. Seos syttyy helposti, palaa täydellisesti ja sopii erinomaisesti huonommin syttyvien polttotaisteluaineiden syttyttämiseen.

Palavaa termiitti- tai termaattiseosta ei voi sammuttaa, mutta sen polttovaikutusta voidaan pienentää peittämällä se esimerkiksi hiekalla. Vedellä sammuttaminen ei ole mahdollista, koskavesi ja palava rauta muodostavat vetyä, joka räjähtää joutuessaan kosketuksiin ilmassa olevan hapen kanssa.

Naftaleeni ja **teflon** ovat uusimpra polttotaisteluaineiden tehoaiteita. Naftaleeniseos sisältää 75 % naftaleenia ja 25 % rakeiksi puristettua magnesiumin ja teflonin seosta. Palaessaan magnesiumin ja teflonin seos höyrystää ja syttyttää naftaleenin. Syntyvät liekit voidaan ohjata ammuksen kuoreassa olevista pienistä rei'istä, jolloin ne syttyttävät palavan materiaalin jopa puolen metrin etäisyydeltä.

Tefloneoksessa on 45-65 % teflonia, 22-28 % magnesium- tai alumiinijauhetta, 1-3 % nitrocelluloosaa sekä lasijauhetta jopa 8 %. Palamisen yhteydessä sulava lasi kiinnittää palavan seoksen tiukasti kaikenlaisille pinnoille. Teflonin aiheuttamat palovammat ovat erittäin pahoja ja vaikeasti parantuvia. Tietoja itsestään palavista polttotaisteluaineista on kuvassa 83.
<table>
<thead>
<tr>
<th>Aine</th>
<th>Koostumus</th>
<th>Käyttö</th>
<th>Väri ja ulkonäkö</th>
<th>Palamislämpötila °C</th>
<th>Huom</th>
</tr>
</thead>
</table>
| Termiitti | 21-29 % Al
71-79 % Fe₂O₃ | Palopommit, kasettipommit | Harmaanmusta | 2000-3000 | |
| Termaatti | 60 % termiitti,
25 % bariummitraatti, 5 % Al ja
10 % sideaineita | Kuten yllä | Tummanharmaa | 2500-3000 | |
| Naftaleeni | 75 % naftaleeni,
25 % magnesiumin ja teflonin seos | Palopommin lisääineena | sp. 80,5 kp. 218 | Haitallinen hengittäessä, ei liuke-
ne veteen | |
| Teflon | 45-65 % teflon,
22-28 % Mg/Al ja 1-3 % nitroSELLULOOSA ja lasijauhe | Kuten yllä | Vaaleanharmaa | sp. 335-345 | |

KUVA 83 Tietoja itsestään palavista polttotaisteluaineista

4.3 POLTTOTAISTELUAINEN LEVITTÄMIS-MENETELMÄT

Poltoaseen otollisimpia maaleja ovat linnoittautuneet tai liikkeellä olevat joukot, pansion- ja muut ajoneuvomuodostelmat, tuliasemat, huoltolaitokset ja varikot, lertotukikohdat sekä maanteiden ja rautateiden risteysalueet. Kohteessa pyritään aikaansaamaan laajalla alueella samanaikaisesti sytyyvä tulipalo, jonka sammuttamista vaikeutetaan sirpalevaikutteisilla ammuksiilla.

Polttotaiteluaineiden laajamittaiseen levittämiseen käytetään ensisijaisesti pompim- ja rynnäkkökoneita sekä taisteluhelikoptereita. Niiden aseistuksena voi olla palopommeja, polttotaisteluainetta sisältäviä säiliöitä, kasettipommeja, jotka sisältävät polttotaisteluaineella täytettyjä tytärpommeja, sekä polttoraketteja.

Palopommit painavat muutamasta sadasta grammasta satoihin kiloihin. Pieniä, sadoista grammoista muutamaan kiloon painavia, pommeja käytetään kasettipommeissa. Kasetin ja tytärammusten koosta riippuen yhdessä kasetissa voi olla yli 600 tytärammusta. Pienimmät sisältävät tavallisimmin itsestään palavaa metallista polttotaisteluainetta, kuten elektron-metallia, zirkoniumia tai termiittä, yli 90 % kokonaispainosta. Tytärammukset palavat puolesta minuutista muutamaan minuuttii. Jokainen pommi aiheuttaa tulipalon, jonka säde on 5-10 m.
Muutaman kilon painoisissa tytärpommeissa voi täytteenä olla termiittä, termaattia, napalmia, pyrogeeliä tai plastisoitua valkoista fosforia 20-40 % pommin painosta. Paloaika on 5-10 minuuttia ja paloalueen särä 25-50 m. Kasettipommit pudotetaan muutamien kymmenien metrien korkeudesta.

Suuria, kymmenistä kiloista yli kaksi sataa kiloa painavia pommeja käytetään yksittäin tai usean pommin kimppuina. Polttotalueluaineena on useimmiten napalm tai pyrogeeli, jota on 40-60 % pommin kokonaispainosta. Tällaisia pommeja käytetään pistemaaleihin ja paikallisten tulipalojen sytyttämiseen. Paloalueen koko riippuu pommin stabilisuudesta, polttotalueluaineesta ja sen määrästä, maaston peitteisyydestä, lentokulmasta pommin pudotushetkellä ja tuulen nopeudesta. Pommi paloaika on noin 10 minuuttia ja pudotuskorkeus 30-70 metriä.

KUVA 84 Napalm-hyökkäys
Rynäkkökoneiden ja taisteluhelikoptereiden aseistuksena voi lisäksi olla trietyyliäumaanilla, naftaleenilla, teflonilla tai muilla polttotaistelualuineilla ladatut raketteja.

Maavoimien poltoaseita ovat tykitön ja heittimistön sekä raketinheittimistön polttotaistelualuineet sisältävät kranaatit ja raketit, liekinheitintimet, polttokäsikranaatit, polttotaistelualuineet sisältävät miinat sekä lähinnä erikoisjoukkojen käyttöön tarkoitetut poltto- ja sytytysvälleen.

KUVA 85 Halkileikkaus tykitön kuorma-ammuksesta

<table>
<thead>
<tr>
<th>Ominaisuus</th>
<th>Kv liekinheitin</th>
<th>Rs liekinheitin</th>
<th>Psv liekinheitin</th>
<th>Kannettava Ih (kaps)</th>
<th>Kannettava Ih (kaps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kokonaispaino</td>
<td>n 20 kg</td>
<td>n 170 kg</td>
<td>-</td>
<td>n 13 kg</td>
<td>n 11 kg</td>
</tr>
<tr>
<td>Napalm-säiliöitä</td>
<td>3 kpl</td>
<td>3 kpl</td>
<td>1 kpl</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Napalm-määrä</td>
<td>3x3-4 l</td>
<td>3x21 l</td>
<td>460 l</td>
<td>4l/kaps</td>
<td>2l/kaps</td>
</tr>
<tr>
<td>Tulinopeus</td>
<td>3 ruiskausta/ täyttö</td>
<td>3 ruiskausta/ täyttö</td>
<td>7 ruiskausta/ min</td>
<td>1 l/s/min</td>
<td>-</td>
</tr>
<tr>
<td>Napalm/ruiskaus</td>
<td>3-4 l</td>
<td>21 l</td>
<td>35 l</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Liekinnopeus</td>
<td>-</td>
<td>100 m/s</td>
<td>100 m/s</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ulottuvuus max</td>
<td>90 m</td>
<td>180 m</td>
<td>200 m</td>
<td>400 m</td>
<td>800 m</td>
</tr>
<tr>
<td>Ulottuvuus käyt</td>
<td>40-70 m</td>
<td>-</td>
<td>-</td>
<td>200 m</td>
<td>400 m</td>
</tr>
<tr>
<td>Vaikutusalue</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>90-160 m²</td>
<td>-</td>
</tr>
</tbody>
</table>

KUVA 86 Tietoja liekinheittimistä

Polttotalkeluainetta sisältävä miina voi olla sähkōlla laukaistava tähysimiä tai veto-/painosytytimmellä varustettu miina. Sytytin räjäyttää panoksen, joka heittää polttotalkeluaineen 10-25 metrin säteelle miinasta ja sytyttää sen samalla tuleen. Polttotalkeluainetta, tavallisimmin napalmia tai pyrogeeliä, on noin 15 kg.

Erikoisvälineinä mainittakoon käsiaseiden syttysturunat, polttotalkeluainetella ladatut käsi- ja kiväärikraanatit, polttopullot ja muut syttyvänvälineet sekä tullesteet.

Syttysturunoissa oleva syttypysmassa syttyttää kohteen tuleen ja aiheuttaa usein myös voimakkaan savun.

Käsi- ja kiväärikraanatissa käytetään tavallisimmin napalmia, pyrogeeliä, termiittiä tai valkoista fosforia. Käskikraanattien ulottuvuus on noin 50 metriä ja kiväärikraanattien noin 200 metriä.

Polttopullot ovat yksinkertaisia, useimmiten vetosytytimmellä varustettuja sitkostettua polttotalkeluainetta tai tavallista polttoainetta sisältäviä pulloja, joita käytetään kohteen syttyttämiseen.

Puolustusryhmityksen suojaksi sulutteiden ja epäsuoran tulen maalien tapaan voidaan valmistella tuulestesteitä. Ne muodostuvat putkistosta, joka on täytetty polttoaineella tai vesistöistä, joiden pinnalle on laskettu suuria määriä öljyä, napalmia tai muuta vettä kevyempää polttoainetta, joka halutulla hetkellä syyte-
tään tuleen. Tällainen este palaa noin 1000 °C kuumuudella, polttaa hapen lähi-
alueelta ja nostaa hiilimonoksidin määrän niin suureksi, ettei aluetta voida ylit-
tää. Paloaika voi olla jopa 30 minuuttia.

4.4 TULIPALOT JA NIIDEN SAMMUTTAMINEN

4.4.1 Palaminen

Palaminen on kemiallinen reaktio, jossa aine yhtyy happeen niin nopeasti, että
syntyy korkea lämpötila ja valoilmiö. Ruostumisessa, lahoamisessa tai muussa
vastaavassa reaktiossa aineen yhtyminen happeen eli hapettuminen tapahtuu hi-
taasti.

Palamisen perusedellytykset ovat happi, lämpötila, syttyvä aine ja häiriintymätön
ketjureaktio. Jos yksikin näistä puuttuu tai poistetaan, ei palamista synny tai se
loppuu. Sammutusmenetelmää valittaessa tuleekin aina arvioida, mikä
edellämainituista palamisen edellytyksistä on helpointa ja tehokkainta poistaa.
Palamisen edellytysten perusteella voidaan useimmiten määrittää myös palon
syttymissyyn.

Sammustustekniseltä kannalta tarkasteltuna palaminen voi tapahtua liekehtimällä,
kytemällä, liekehtimällä ja kytemällä tai metallipalona.

Palamiseen tarvittavan hapen määrä on ainekohtainen. Jos palamisilman happi-
pitoisuus laskee alle 15 %, palaminen yleensä loppuu tai hidastuu huomattavasti.
Puun tms kuituisen aineen kytevää palossa happipitoisuuden tulee laskea kui-
terin alle 7 %, jotta palaminen loppuisi. Ilmassa olevan hapen määrällä ei juuri-
kaan ole merkitystä sellaisten aineiden palamiselle, jotka sisältävät happea tai syn-
nyttävät sitä palamisreaktion yhteydessä. Näitä ns hapettavia aineita ovat esimer-
kiksi peroksidit, kloraatit ja nitraatit, dynamiitti ja useimmat räjähteissä käytetty
aineet.

Lämpötilan on oltava riittävän korkea, jotta aineesta muodostuisi syttyviä kaasu-
ja. Tämä ns pyrolysoitumislämpötila vaihtelee eri aineilla. Puun pyrolysoituminen
alkaa noin 140 °C:n lämpötilassa, muoveilla vastaava arvo noin 200 °C. Nesteillä
pyrolyysiä vastaa höyrystyminen.

Syttymislämpötila on alin lämpötila, jossa aine syttyy palamaan ilman ulkopuo-
lista syttymislähettä. Esimerkiksi puun syttymislämpötila on 280-340 ja bensii-
nin 400-530 °C.
Nesteitä kuumennettaessa niistä erottuva kaasu ja ilma muodostavat seoksen, joka syttyy ulkopuolisen syttymislähteen vaikutuksesta. Tätä lämpötilaa kutsutaan **leimahduslämpötilaksi** tai -pisteeksi. Esimerkiksi bensiinin leimahduslämpötila on alle 40, kevyen polttoöljyn 60-80 ja voiteluöljyn 260-280 °C.

Palamislämpötila on se lämpötila, jonka aine kehittää palaessaan. Myös se on ainekohtainen, jonka vuoksi palokhoiten eri osissa voi olla erilainen lämpötila. Huoneistopalon palamislämpötila on yleensä 800-1000, savukkeen 500, bensiinin 950, puun 1000 ja muovien 1500-3000 °C.

Jatkuvan palamisen ja palon leviämisen edellytykset ovat olemassa vasta syttymislämpötilassaa ja sen yläpuolella. Aineen palaessa sen palamislämpötila lämmittää ainetta, josta edelleen muodostuu uusia syttyviä kaasuja.

Sammutusmenetelmästä, joka perustuu hapen poistamiseen, käytetään nimitystä **tukahduttaminen**. Se soveltuu parhaiten liekehtimällä palavien aineiden, kuten nesteiden ja kaasujen sammuttamiseen. Huonosti se sitävastoin sopii happea sisältävien tai sitä palamisen yhteydessä tuottavien aineiden sammuttamiseen.

Silloin, kun palo sammutetaan poistamalla lämpöä, käytetään sammutusmenetelmänä **jäähdytystä**. Tavallisimmin jäähdytämiseen eli lämmön sitomiseen käytetään vettä. Palavien nesteiden sammuttamiseen vesi ei kuitenkaan soveltu, koska neste on palaessaan yleensä niin kuumaa, että vesi kiehuu siinä väliittömästi ja aiheuttaa samalla palavan nesteen roiskumisen laajemalle alueelle. Nestepalon sammuttamisessa pyritään estämään lämmön siirtymisen liekeistä nesteen pinnalle, jolloin neste ei höyrysty eikä uusia syttyviä kaasuja muodostu. Tämä voidaan tehdä esimerkiksi sammutusvaahdolla, jolla on myös tukahduttava vaikutus.

Palamisen edellytyksenä olevan syttyvän aineen poistamista sanotaan **sammutusraivaukseksi**. Sitä käytetään usein samanaikaisesti muiden sammutusmenetelmien kanssa. Syttyvän aineen poistosta on kysymys myös silloin, kun sulkemalla venttiili tai vuotokhoita estetään palavan nesteen tai kaasun purkautuminen. Nestepalo voidaan sammuttaa myös siten, että säiliöstä pumpataan alakautta nestettä pois niin paljon kuin on turvallista, ja annetaan jäljelle jäävän nesteen palaa loppuun.

Yhtenä palamisen edellytyksenä on katkeamaton kemiallinen ketjureaktio. Tämän ketjureaktion katkaisemisesta käytetään nimitystä **inhibito**. Sammutteena oleva aine toimii antiaktivytyttäen, joka estää happimolekylien osallistumisen palamisreaktiioon. Tämä kään menetelmä ei sovellu kovin hyvin sellaisten aineiden sammuttamiseen, jotka sisältävät happea.
4.4.2 Sammutteet

Varsinaisten sammutusjauheiden puuttuessa tukahduttamiseen voidaan käyttää kuumuttava kestäviä hienojakoisia aineita, kuten hiekkaa, sementtiä, multaa tai muita vastaavia aineita.

Sammatusvaahoja käytetään yleensä nestepalojen sammutuksessa. Yleisimmin sammutusvahto tehdään vaahdonkehittimilla, joissa veden ja vaahdotteen seoksesta muodostuu ilmakuplia, vahtoa. Erääät vaahdotteet muodostavat veden

4.4.3 Huoneisto- ja metsäpalot

Huoneistopalo on voinut kehitettyä lieskahdusta edeltävään vaiheeseen, jos
- ovet ja ikkunat ovat pääosin ehjiä ja huoneisto on muutenkin tiivis
- ulos purkautuva savu on mustaa, jolloin palo on epätäydellistä
- luukuista ja venttiileistä purkautuu välillä tummaa savua, välillä taas päine vetää raitista ilmaa sisään eli palo ikäänikin ”hengittää”
- palo on kytenyt jo pidemmän aikaa, jolloin seinäpinnat ja katto ovat kuumia.

Lieskahdus voi vaikuttaa räjähdyksen tavoin, mikä on otettava huomioon sammuttajien työturvallisuudessa sekä sammutustaktiikassa ja -tekniikassa. Kuva 87 on esitetty huoneistopalon kehitynnä.
KUVA 87 Huoneistopalon kehittyminen
Metsäpalon voi edetä maapalon, suopalon ja latvapalon. Palo voi kehittyä hyvinkin laajaksi ja pitkäaikaista sammuttamista vaativaksi.

Suopalo etenee maan pinnan alla kytemällä turvekerroksen onkaloissa, joista se nousee sopivissa kohdissa maan pinnalle ja alkaa edetä maastopalona. Suopalon eteneminen on hidasta. Se saattaa kyseä turvekerroksessa yli talven ja maan kuivuessa keväällä syttyttää varsinaisen metsäpalon. Suopalon sammuttaminen on hankalaa ja työlästä.

Sammutustyössä on otettava huomioon palon kärkikaaren edessä tapahtuva savun muodostuminen. Savu sisältää mm. häkää ja estää näkyvyyden, joten suoraan tuulen alapuolella ei sammutustyö ole turvallista eikä tehokasta.

4.5 POLTOTAISTELUINEIDEN VAikutukSET JA SUOJAUTUMINEN NIILTÄ

Ihmiselle polttotaisteluaineet ja tulipalot aiheuttavat palovammoja joko suoraan tai vaatteiden syttymisen välityksellä. Palovammojen laatu ja vakavuus riippuvat polttotaisteluaineen koostumuksesta, henkilön etäisyydestä palokohteseen sekä ajasta, jonka henkilö palon vaikutusalueella on. Suojatilojen ylikuumeneminen, hapen puute, hiilimonoksidi, hiilidioksidi, myrkylliset kaasut ja savu saattavat aiheuttaa lisävammoja.

Poltotaisteluaineet ja tulipalot vahingoittavat materiaalia lämpösäteilyllä, kuumilla palokaasuilla, polttotaisteluaineessa olevan metallin sulaessa tai syttyttämällä materiaalin tuleen. Kaikkein alttiimpia palovaikutukseille ovat ajoneuvot, lentokoneet, alukset, polttoaainesäiliöt, suojaamattomat ammukset ja elektroniset laitteet. Viime mainitut ovat erityisen alttiita kuumuudelle ja ruostumista aiheuttaville palokaasuille.

Värusteiden, ajoneuvojen ja linnoitteiden antamaa suojaa on käsitelty luvussa V.

Jokainen joukko valmistautuu sammuttamana itse pienet tulipalot. Sammutusosastoja käytetään yleensä suurten, joukkoysikön tai yhtymän toiminnan vaarantavien palojen sammuttamiseen. Laajat palot voivat pakottaa ryhmittämään joukkoja uudelleen.
V LUKU
SUOJAUTUMINEN ABC- JA POLTTOASEEN VAIKUTUKSILTA

5.1 YLEISTÄ

Taistelijan suojaravusteiden, joista tyypillisimpiä ovat kypärä ja suojaliivit, historia ulottuu tuhansien vuosien taakse. ABC-suojaukseen on kuitenkin alettu kiinnittää huomiota vasta 1900-luvulla. Suojaravusteet ovat tällä hetkellä voimakkaan kehitystyön kohteina. Tavoitteena on parantaa suojaustehoa ja samalla alentaa suojauksen aiheuttamia kuormitustekijöitä.

Suojaus voidaan toteuttaa periaatteessa kolmella eri tasolla. Näitä ovat kiinteät linnoitteet ja niin liittyvät suojajärjestelmät, ajoneuvot, laivojen ja muiden liikkuvien laitteiden antama suoja sekä henkilökohtainen suojus. Linnoitteissa ja liikkuvissa laitteissa ballistinen ja ABC-suojaa voidaan yhdistää.

Altistuminen biologisille ja kemiallisille taisteluaaineille voi tapahtua hengityksen, ihokontaktin sekä saastuneen juomaveden tai ravinnon välityksellä. Yksilön suojaravusteilla pyritään estämään hengityksen ja ihmän kautta tapahtuva altistuminen. Valvomalla elintarvikkeiden ja juomaveden laatua sekä ruuan valmistuksesta ja jälkeluun käytettävien astioiden puhtautta pienennetään huonosta hygieniasta johtuvia sairastumisriskejä.

Suojautuminen polttoaseelta edellyttää varusteilta hyvää liekin, lämpö säteilyn ja palavien roiskeiden kestokykyä.
5.2 YKSILÖN SUOJAUS

5.2.1 Suojauksen periaatteet

Yleinen käsitys on, että ABC-suojasut alentavat suorituskykyä merkittävästi. Tutkimusten mukaan nykyenkäsillä suojavelineillä varustettu ja niiden käyttöön harjaantunut joukko kykenee suoriutumaan tehtävistään kuitenkin noin 80 %:n teholla verrattuna siihen, että se toimisi ilman suojavarustusta.

Kummallakin menetelmällä on omat etunsa ja haittansa. Eristämisessä käytettävät varusteet ovat yleensä raskaita ja niiden käyttöäika on rajoitettu. Niiden etuna on riippumattomuus ympäröistä. Suodatusmenetelmässä varusteet ovat yleensä kevyitä ja niiden pitkäaikainen yhteytykseen käyttö on mahdollista. Menetelmää ei voida kuitenkaan käyttää, jos ilman happipitoisuus on merkittävästi alentunut, ilmassa on hiilimonoksidia tai vaarallisena aineen pitoisuus on hyvin korkea.

5.2.2 Henkilökohtaisten varusteiden antama suojaus

Henkilökohtaissilla varusteilla tarkoitetaan maastopukua, sadeviittaa ja kumisappaita sekä suojanaamaria, jonka ominaisuuudet esitellään varsinaisen ABC-suojavarustuksen yhteydessä.

Sadeviitaan ja sadeasun käytöt maastopuvun kanssa parantaa jonkin verran taistelijan ABC-suojauksen. Niiden materiaali antaa lyhytaikaisen suojan myös nestemäi-
Siä taisteluaineita vastaan. Sinappikaasu läpäisee tavalliset sadeasumateriaalit muutamassa tunnissa. Lämmin sää nopeuttaa läpäisyää.

5.2.3 Varsinaiset suojavarusteet

Taistelijan varsinaisia ABC-suojavarusteita ovat suodattimella varustettu suojanaamari, ABC-suojat, suojakäsineet sekä jalkineet tai erilliset jalkinesuojat. Suojavarusteissa on sellaisia materiaalikerroksia, joita ei tavallisissa varusteissa yleensä käytetä.

Suojanaamari

Vanhat suojanaamarit on tavallisimmin valmistettu luonnonkumista. Uusissa suojanaamareissa käytetään synteeettisiä butyylipohjaisia kumilaatuja, joiden etuja ovat hyvää tiiveys, hyvä kemikaalien ja lämmön kesto sekä pitkä käyttöikä. Butyylikumista valmistettu naamari kestää esimerkiksi nestemäistä sinappikaasua useiden vuorokausien ajan. Hyvin suosittu materiaali nykyisin on bromibutyyliliki, josta mm suomalainen sotilassuojanaamari M-95 valmistetaan.

Suojanaamarin lasit valmistetaan tavallisesti polykarbonaatista tai polyamidista, joilla saadaan hyvät optiset ominaisuudet ja kohtalainen iskunkestävyys. Heikko-utena on alttius naarmuuntumiselle kovien hiukkasten, kuten hiekan vaikutuksesta. Suojanaamarin muilta muoviosilta vaaditaan laajaa käyttölämpötila-aluetta, hyvää mekaanisia ominaisuuksia sekä syttymättömyyttä lyhyaikaisen liekin vai kutuksesta.

Käyttäjän kannalta on oleellista, että naamari on ehjä, toimintakuntoinen ja tivistyy kasvoille hyvin. Oikean kokoisien naamarin reunatiivisten ja kasvojen ihon

KUVA 89 Suojanaamari M-95 ja hengitysilman kulku suojanaamarissa

Käyttäjän suorituskykyyn vaikuttaa myös uloshengitysilman sisältämä hiilidiok-sidi, sillä osa uloshengitysilmasta jää sisänaamariin ja joutuu uudelleen sisäähnghityskseen. Hengitysilman hiilidioksidipitoisuus käytettäessä suojanaamaria on yleensä 0,6-1,0 tilavuusprosenttia. Tähänkin elimistö mukautuu nopeasti.

Kokonaisuudessaan suojanaamarin fyysistä suorituskykyä alentava vaikutus on melko vähäinen, mutta on kuitenkin havaittava.

Suodatin

Hengitysilman puhdistaminen radioaktiivistä hiukkasista sekä biologisista ja kemiallisista taisteluaineista tapahtuu ABC-suodattimen avulla. Suodatin ei pidätä häkkää eli hiilimonoksidia, vaan sihen tarvitaan erikoissuodatin. ABC-suodatin pidättää huonomasti myös ammoniakkia ja rikkihiilidioksidia.

KUVA 90 ABC-suodattimen rakenne
Radioaktiivinen pöly, biologinen materiaali sekä aerosoleina olevat kemialliset taisteluaineet jäävät aeroisolisuodattimeen. Höyrystyneet kemialliset taisteluaineet kulkeutuvat aktiivihiilikerrokseen saakka. Kaikista hiukkasista 99,995 % jää aerosolisuodattimeen, huonoiten se pidättää 0,1-0,2 mikrometrin kokoisia hiukkasia.

KUVA 91 Aerosolisuodattimen rakenne

Suodattimissa käytettävä korkealuokkainen aktiivihiili valmistetaan tavallisimmin kivihiilestä tai kookspähkinän kuoresta. Aktivoinnin avulla hiilen
ominaispinta-ala nostetaan noin 1000 m²/g, jolloin suodattimessa olevan hiilen kokonaispinta-ala on yhteensä 10-15 hehtaaria. Suuren ominaispinta-alansa ansiosta aktiivihiihi pystyy sitomaan pinnalleen eli adsorboimaan vieraita aineita.

Suodattimen aktiivihiihi on verrattain pienirakeista. Hiilikerroksen paksuus on yleensä noin 20 mm. Paksu kerros ja pienirakeinen hiili parantavat suodattimen pidätyskykyä, mutta lisäävät hengitysvastuuta. Suodattimen geometria puolestaan vaikutaa siihen, kuinka tehokkaasti aktiivihiihen pidätyksapaseetti voidaan hyödyntää.

Aktiivihiihen lisättävällä kupari-, kromi- ja hopeayhdisteillä saadaan aikaan kemiallinen pidätyskyky pienimolekyylisille myrkyllisille aineille, kuten syyanivedylle ja kloorisyanaillle, joita käsittelemätön aktiivihiihi sitoo heikosti. Kuparin ja kromin osuu hiiliseoksesta on muutamia prosentteja, hopeaa on vain muutamia prosentin kynmenesosia. Uutena lisääneena on alettu käyttää trietyleenidamiinia (TEDA), joka parantaa kuudenarvoisen kromin stabilisuutta. TEDA:a ei kuitenkaan käytetä kaikissa suodatinhiiliissä.

Suodattimen runko ja tukilevyt valmistetaan tavallisesti alumiinista tai polyamidista. Suodatin kiinnitetään naamariin kierrelitoksella, jonka tiiveys varmistaa pohjatiivisteellä. Uuden sukupolven suojanaamareissa on 40 mm:n standardikierre.

Jos suodatin joudutaan vaihtamaan saastuneella alueella, on hengitystä pidätettävä, kunnes uusi suodatin on tiukasti paikallaan. Käytetty suodattimet hävitetään kaivamalla ne maahan. Saastunutta suodatinta ei voida puhdistaa uudelleen käyttöön otettavaksi.

Suojanaamarin käyttö ja huolto

Naamaria säilytetään taisteluvyön tai kantolaitteen taskussa tai omassa laukussaan. Samassa tilassa pidetään suodatin, henkilökohtaiset puhdistusvälineet, suoja-käsineet sekä hermokaasujen vastalääkkeenantolaitte.

Käyttäjän velvollisuutena on tarkastaa suojanaamarin kunto ja puhtaus sekä tehdä pienet huoltotoimet. Erikoistyökaluja vaativat huoltotoimet, kuten lasien vaihto,
kuuluu suojeluhoitotohenkilöstölle. Erityistä huomiota tulee kiinnittää uloshengitysventtiilin läpän kiinnitykseen sekä sen ja vastapinnan puhtauteen, sillä pienikin roska, hius tai partakarva aiheuttaa vuotoa naamarissa.

Suojanaamarin tiivistyminen kasvoille voidaan kokeilla sulkealla suodattimen ilma-aukkoo kämmenellä ja vetämällä ilmaa sisään voimakkaasti. Jos naamari painautuu sisäänpäin ja alipaine pysyy naamarissa, on tiiveys hyvä. Naamarin toimintakunto ja tiiveys voidaan varmistaa myös kynnelkaasukokeessa. Jos naamari vuotaa, on se vaihdettava välittömästi.

Suojanaamarin lasit, erityisesti niiden reuna-alueet, pyyhitetään huurtumisen välttämiseksi sisäpuolelta lasivoidetikulla. Uuden sukupolven naamareissa ei lasien voitelu ole tarpeen.

Naamari puhdistetaan vedellä ja saippualla jokaisen käyttökerran jälkeen. Pesun jälkeen naamari kuivataan huolellisesti kangasrätillä. Suodatinta ei saa koskaan kastella. Taisteluaineista naamari puhdistetaan kemikaalien avulla.

ABC-suojavaatetus

Suojavaatetuksen tarkoituksena on suojata ihoa ABC- ja polttotaseiden vaikutuksilta. Käytettävissä on useita erilaisia asukokonaisuuksia riippuen siitä, mitä suojauomisainuaisuutta halutaan korostaa. Hyvää ABC-suojavaatteessa eri suojauomisainuaisuuden ovat keskenään tasapainossa, minkä lisäksi vaatteen aiheettaa fyysinen kuormitus on kohtuullinen. Asun tulee estää neste-, kaasu- tai aerosolimuodon olevien aineiden pääsy iholle eikä se saa sytyttää helposti lyhytaikaisen liekin tai kuumuuden vaikutuksesta. Suodatusperiaatteella toimivissa asussa tarvitaan vähintään kaksi materiaalikerrosta, eristysperiaatteella toteutetussa asussa selvitetään yleensä yhdellä kerroksella.

senä voi olla ääreisosien jäähtyminen, pahimmassa tapauksessa sormien ja varpaiden paleltuminen.

Aktiivihileen perustuvat suoja-asut

Aktiivihiiiliasuissa on pintakangas, aktiivihiiiltä sisältävä adsophtiokerros sekä vuorokangas. Polvissa, kynärpäissä ja takamukissa voi olla tiivistä ja läpäisemättömästä materiaalista tehdystä vahvistukset. Muuten asut luokitellaan hengittäviksi, eli ne päästäävät lävitseen iholta haihtuvan vesihöyryn.

Uusimmissa aktiivihiiilikankaissa käytetään kuitu- tai pallomoondossa olevaa aktiivihiiiltä. Kankaiden adsophtiokyky, mekaaninen lujuus, pesunkestävyys ja hengittävyys ovat erittäin hyvät. Kankaissa olevan aktiivihiiilen määrä vaihtelee, keskimääräisenä arvona voidaan pitää 120-180 g/m², joten koko asussa on noin 200-350 g aktiivihiiiltä eli 2-3 kertaa enemmän kuin naamariisuodattimessa. Määriä tärkeämpää on kuitenkin adsophtiokerroksen tasaisuus ja yhtenäisyys sekä hiilen adsophto- ominaisuudet. Vertailututkimuksissa on eri aktiivihiiilikankaideen adsophtiokyvyyssä havaittu suuria eroja.

Pallo- ja kuituhiiilikankaat ovat korkealuokkaisia aktiivihiiiliasujen materiaaleja. Pallohiilikankaassa tukikankaan päälle on liimaamalla kiinnitetty tasainen kerros kooltaan 0,3-0,5 mm hiilipalloja. Pallot eivät rikkoudu tavallisen käytön aiheuttamien puristusvoimien vaikutuksesta. Kuuluisin pallohiilikangas tunnetaan kauppanimellä Saratoga.

Kuvassa 92 on mikroskooppikuva pallohiilikankaasta, jossa voidaan nähdä hiilipallojen muodostama tasainen peittävä kerros.
KUVA 92 *Pallohiilikankankaan rakenne*

Aktiivihiihiasut on kehitetty pitkääikaista, erityisesti lämpimissä sääoloissa tapahtuvaa käyttöä silmällä pitäen. Asu aiheuttaa suunnilleen saman suuruisen lämpökuormituksen kuin tavallinen maastopuku.

Aktiivihiihivasuissa käytetään samantyyppisiä materiaaleja kuin varsinaisissa aktiivihiihipuvuissa eli uretaanivahtoon sidottua rakeista aktiivihiihtä, pallohiiltä tai kuituhiiltä. Jälkimmäiset vaihtoehdot edellyttävät tukikankaan käyttöä. Kankaassa on aktiivihiihiltä noin 120 g/m². Useimmat kangasmateriaalit ovat jonkin verran joustavia, mikä parantaa asujen käyttömuokkuutta.

Aktiivihiihivasu on suojavaruste, jota käytetään vain uhkatilanteissa. Jatkuva käyttö ei ole suotavaa, koska kuluminen, hikoilu ja pesukerrat heikentävät puvun suojausominaisuksia. Aktiivihiihikankaasta valmistetun väliasun päällä käytetään maastopukua, sadeasu, pakkaspukua tai mitä tahansa erikoisasiaa, jolloin aktiivihiihivasu suojaa ihoa päälyysvaatetuksen läpi tunkeutuvilta taisteluaineilta. Väliasu on helppo kuljettaa mukana, se on kevyt ja mahtuu pieneen tilaan. Väliasut
pakataan vakuumipakkauksiin, joissa niiden suojausominaisuudet säilyvät parhain-
ten. Käytössä olleet asut voidaan pestä koneellisesti tavanomaisesta liasta.

Väliasut, kuten varsinaiset aktiivihiiliasutkin, antavat hyvän suoajan hoyerystyneitä
taisteluaineita vastaan. Ne sallivat liikkumisen ja toiminnan maastokaasun
saastuttamalla alueella. Koska niiden aiheuttama lämpökouorma on pieni, ne so-
veltuvat hyvin myös pitkääikaiseen käyttöön.

Aktiivihiiliväliasun toimintaa yhdessä muun vaatetuksen kanssa on havainnollistettu
kuvassa 93.

KUVA 93 Ihon ABC-suojaus aktiivihiiliväliasun avulla

Eristävät suoja-asut

Butyrylikumi on synteeettinen kemialli, joka on hyvin tiivis ja antaa siten pitkääi-
kaisen suojan nestemäisiä taisteluaineita vastaan. Butyrylikumista valmistettu, yksi-
osainen, tiivissaumainen suojapuku eristää käyttäjänsä lähes täydellisesti
ulkoilmasta. Suojapuku voidaan varustaa aktiivihiilikankaalla peitetyllä aukolla,
jonka kautta vähäinen ilman vaihtuminen puvun sisätilan ja ympäristön välillä on
mahdollista. Butyrylikumisen suojapuvun alla käytetään ulkolämpötilan mukaan
muuta vaatetusta. Kesälläkin puvun ja ihon välissä tulee olla ainakin yksi vaate-
kerta.

Butyrylikuminen ABC-suojapuku soveltuu sellaisiin tehtäviin ja käyttötilanteisiin,
joissa joudutaan alttiiksi runsaalle saasteelle. Näistä esimerkkeinä ovat kaluston
puhdistus sekä tiedustelu pahasti saastuneessa maastossa. Butyrylikumi kestää ly-
hytaikaisesti liekin ja lämpö säteilyyn vaikutusta. Palavat, kiinni tarttuvat roiskeet
polttavat siihen pieniä reikiä, itse kumimateriaali ei kuitenkaan syty palamaan.
Butyrylikuminen suojapuku ei läpäise iholta haihtuvaa vesihöyryä, mistä johtuen lämpökuormitus voi pitkäkestoisessa käyttössä nousta suureksi. Ulkoilman lämpötilalla on kuitenkin erittäin suuri merkitys sekä puvun aiheuttamaan lämpökuormituksen että puvun pitomukavuuteen.

Käyttäjän liike aiheuttaa pumpauseffektin. Puvun sisään muodostuvat alipaine pyrkii tasoittumaan vetämällä ilmaa sisälle, jolloin vuotoa esiintyy tavallisimmin suojapuvun ja muun varustuksen välissä liittymäkohdissa. Suojapuvun selkään asennettu aktiiviihiilikankainen tuuletusaukko vähentää tämänkaltaista vuotoa.

Kertakäyttöiset suoja-asut

Kertakäyttöisten pukujen etuja ovat keveys, pieni tilantarve ja halpuus. Kaupallisista materiaaleista esimerkkeinä mainittakoon Tyvek ja Rolamit.

Käsien ja jalkojen suojaus

5.2.4 Varsinaiset paloasut

Paloasut ovat tavallisimmin kaksiosaisia. Aiemmin materiaalina käytetty palosuojainaineilla käsiteltävillä on nykyisin korvattu keinokuitumateriaaleilla mm. Nomexilla. Asut ovat hengittäviä, mutta hyvän lämmönristävyyttänsä vuoksi ne aiheuttavat lämpökuormitusta.

5.2.5 Paineilmahengityslaitteet

Paineilmahengityslaitteilla varustettu henkilö on täysin riippumaton ympärioivän ilman laadusta ja hapon pitoisuudesta. Paineilmalaitteita käytetään yleensä savusukellus- ja pelastustehtävissä tiloissa, joissa happipitoisuus on alentunut ja hiilimonoksidin pitoisuus on korkea sekä kemikaalionnettomuuksissa, joissa on myrkytysvaara. Tavalliset paineilmalaitteet soveltuvat myös vesisukellukseen.

KUVA 94 Paineilmahengityslaitteisto

5.3 JOUKKOJEN SUOJAAMINEN

Paras suojausteho ABC- ja polttoaseita vastaan saavutetaan rakenteellisella suojauksella. ABC-suojiihin, joita ovat mm. kantalinnoitteet, suojarakennekset ja väestönsuojat, otetaan ilma suodatinjärjestelmän kautta ja niissä vallitsee ylipaine. Myös tavalliset rakennukset, kontit, teltat, ajoneuvot ja laivat voidaan varustaa rakenteellisella suojauksella. Niissä voidaan toimia ilman suojaravustusta, joten suojaravustuksen käyttö ei alenna henkilöstön suorituskykyä.

5.3.1 Pika- ja kenttälinnoitteet

Pika- ja kenttälinnoitteet suojavat kohtalaisesti ydinräjähteiden välittömiltä vaikutuksilta, jos ne ovat täydellä suojauksella ulkopuolella. Varsinkin korsut antavat hyvän suojan sokaisuus, poltto- ja paine vaikutustavat leikkuu alkuasteilyä vastaan.

KUVA 95 Poteron antama suojaa alkuasteilyä vastaan

Esimerkiksi alkusaiteilynä saatavan gammasäteilyn määrä puoliintuu jokaisessa 20 cm:n paksuudessa maakerroksessa. Poteron suojakolon päässä oleva 60 cm:n maakerros pienentää alkusaiteilymäärän 1/8:aan alkuperäisestä arvosta. Suojaa voidaan parantaa panemalla poteron aukon päälle irtokante. Kuvassa 95 on havainnollistettu poteron antamaa suojaa alkusaiteilyä vastaan.

![Diagram](image)

KUVA 96 Gammasäteilyn puoliintumispaksuudet alku- ja jälkisäteilylle

Alkusäteily on noin kaksi kertaa läpimurkavampaa kuin jälki- eli laskeumasäteily, joten myös puoliintumispaksuudet ovat kaksinkertaiset.

Gammasäteilyn vaiemeneminen voidaan karkeasti arvioida kaavasta

\[
\text{Säteilysuoja} = (1/2)^\text{puoliintumispaksuksien lkm}
\]

Esimerkiksi puulaattakorsu, jossa puukaton paksuus on 20 cm ja jonka päällä on maata 130 cm, vaimentaa jälkisäteilyn
Betonilaattakorsu, joka on rakennettu 15 cm:n paksuisesta teräs betonista antaa kaksi kertaa paremmat suojan eli

\[(1/2)^{14} = 1/16384 \sim 1/16000 \text{ osaan alkuperäisestä}\]

\[(1/2)^{15} = 1/32768 \sim 1/33000\]

Kuvassa 95 esitetty potero, jonka vaimennuskerroin alkusäteilylle oli 1/8, vaumentaa jälkisäteilyn \((1/2)^9\) eli 1/64.

Säteilyn annosnopeus \((Sv/h) = 1/(\text{etäisyys})^2\)

Jos säteilevää maata siirretään yhden metrin päästä kolmen metrin päähän, säteily pienenee \(1/3^2\) eli 1/9:teen osaan.

Ydinräjähdyksen, poltoaseiden ja tavanomaisten aseiden aiheuttamat tulipalot saattavat kuluttaa hapen poteroista ja taisteluhaudasta, nostaa häkäpitoisuuden tapa pavan suureksi ja aiheuttaa sietämättömän kuumumuuden. Kunnollinen korso saattaa olla ainoa paikka, jossa hengissäpysyminen näissä tilanteissa on mahdollista.

5.3.2 Rakennukset

Rakennukset vaimentavat ydinräjähdyksen aiheuttamaa säteilyä. Tiivistämällä ikkunoiden ja ovien raot sekä sulkeutua koneellinen ilmanvaihto ja ilmanvaihto-
ukot vähennetään säteilypölyyn sekä kemiallisten ja biologisten taisteluaineiden pääsyä sisätiloihin.

KUVA 97 Rakennusten vaiemmuskertoimet laskeumatilanteessa

Taloihin voidaan rakentaa myös omatekoinen suodatusjärjestelmä. Sen periaate on esitetty kuvassa 98.
KUVA 98 Jokamiehen pölyn-suodatin

5.3.3 Väestönsuojat

Sisään imettävä ilma suodatetaan samalla periaatteella kuin suojaamaareiss. Suojan ylipaine säädetään ylipaineventtiilien avulla 50 - 250 Pa (5 - 25 mmH₂O).

Väestönsuojien ilmanvaihtoa voidaan käyttää joko suodatus- tai ohituskäytössä. Väestönsuojaa voi olla myös sulkutilassa, jolloin ilmavaihto ulkoilmaan on eristetty ja ilmaa kierrätetään vain suojan sisällä.
Suodatuskäytössä raitista ilmaa otetaan suojaan vähintään 2 m³/h henkilöä kohden ja ohituskäytössä 6 m³/h. Jos kyseessä on toiminnallinen suojat, esimerkiksi johtokeskus, ilmamäärien tulee olla kolminkertaiset.

Koska hiiliäksi aiheuttaa väämustä, sen pitoisuus ei saa nousta yli 2 tilavuusprosentin. Samansuuruisen pitoisuus sallitaan esimerkiksi sukellusveneissä. Tappava hiiliäkipitoisuus on 6-8 %. Mainittakoon esimerkkinä, että suojanaamarissa pitoisuus on yleensä 0,6-1,0 tilavuusprosenttia.

Suojan happipitoisuuden tulee olla yli 18 tilavuusprosenttia. Jos se laskee alle 15 %, on seurauksena tajuttomuus ja kuolema. Hapenkulutus henkilöä kohden on noin 25 l/h ja hiiliäkipämin tuotto noin 20 l/h. Täysi suojat voi olla sulkituilla tässä ollen korkeintaan 6-8 tuntia.

KUVA 99 VSS-suodatin
Suodatinjärjestelmän edessä on verkko tai ritilä, joka estää esineiden ja karkean maa-aineksen pääsyn suodatinjärjestelmään. Paineiskuventtiili ottaa vastaan paineiskun, sulkee järjestelmän ja estää suodattimien rikkoutumisen. S1-luokan väestönsuojan paineiskuventtiilin tulee kestää kolme vähintään 300 kPa:n (3 barin) paineiskua. Muiden VSS-suojien paineiskuventtiilit kestävät vieläkin suurempia paineiskuja.

Hiilen kostuessa suodattimen kaasunpidätyskyky pienenee. Tämän vuoksi suodattimelle tuleva ilma kuivataan ja esilämmmitetään. Jos ilman suhteellinen kosteus on esimerkiksi 70 % ja lämpötila 21 °C, suodattimen pidätyskyky alenee merkittävästi ilmavirtauksella 150 m³/h jo viiden tunnin kuluttua. Tutkimuksissa on todettu, ettei suodattimen kaasunpidätyskyky olennaisesti alene, jos kosteus ei ylitä 15 prosenttia hiilen painosta. Kostumisen ja kuivaamisen vääristä suhdetta on kuvattu kuvassa 100.

![Diagram](image)

KUVA 100 Suodatinhiilen kostuminen

Aktivihiilisuodattimen tulee pidättää klooripikriiniiä 33 % (fysikaalinen adsorptiokyky) ja kloorisyanaa 8 % (kemiattinen adsorptiokyky) kuivan aktivihiilen painosta. Esimerkiksi väestönsuojan erikoissuodatin ES-150 (mitoitettu ilmamäärälle 150 m³/h) sisältää aktiivihiltä 15 kg ja pidättää klooripikriinia vähintään 5 kg ja kloorisyanaan 1,2 kg. Kaasun adsorboitumiseen vaikuttaa aika, jonka se viipyy hiilessä. Kaasun viipymäajan aktivihiiliipatsaassa tulee olla vähintään 0,75 sekuntia.
Suojautuminen aloitetaan yleensä sulkuväylällä, jota voi kestää 1,5-3 tuntia. Sen jälkeen siirryttään suodatusväylöön, jossa ollaan niin kauan, kunnes uhka on poisintunut. Lopuksi siirryttään ohituskäyttöön, jota voi kestää vuorokausia.

5.3.4 Kantalinnoitteet ja suojarakennukset

Kantalinnoitteet ja suojarakennukset ovat kallioon louhittuja tai teräsbetonista maakerroksen pintakerroksin rakennettuja suojuja, jotka kestävät ABC- ja polttoaseiden sekä tavanomaisten aseiden vaikutuksia. Rakenteet antavat suojoan henkilöstölle, aseille sekä ase - ja johtamisjärjestelmille paineaalto, tärinää, tunkeumaa, aerosolipommia, polttotaisteluaineita, kemiallisia ja biologisia taistelulaineita, radioaktiivista säteilyä, lämpölähteitä sekä elektromagneettista pulssia ja mikroaaltopulssia vastaan.

Ydinräjähdyksestä syntyyvän paineaallon suuruus voidaan laskea melko tarkasti räjähteen koon ja etäisyyden perusteella. Paineaallon vaikutuksia on tarkasteltu luvussa 1.6.6. Kantalinnoitteiden ja suojarakennusten paineovet ja ilmanvaihtokanavien paineiskuventtiilit ovat samanlaisia kuin väestönsuojien vastaavat laitteet.

5.3.5 Panssaroidut ajoneuvot

Panssaroitujen ajoneuvojen ABC-suojas voidaan toteuttaa kolmella eri periaatteella.

Yleisin tapa on tiivistää eli hermetisoida vaunu siten, että imettäessä ilmaa suodattimen lävitse muodostuu vaunun sisäille ylipaine, joka estää vaarallisten aineiden pääsyn sisätiloihin. Järjestelmä mahdollistaa pitkäaikaisen suojaautumisen. Hyödynnä on myös se, että suojaamaaria ei tarvitse käättää, mikä helpottaa esimerkiksi optisten laitteiden ja viestivälineiden käyttöä.

Toinen tapa on johtaa suodatettua ilmaa ylipaineella jokaisen taistelijan suojaamaariin joko suoraan tai naamarisuodattimen kautta. Hengitysvastus jää molemmissa tapauksissa paljon pienemmäksi kuin käytettäessä suojamaaria.
normaalilla tavalla. Liikkuminen vaunun sisällä on kuitenkin rajoitettua, sillä tais-
telijan suojanaamari on letkulla kiinni ilmastointijärjestelmässä. Siirryttäessä ulos
irrotetaan letku naamarista tai suodattimesta. Ensinnäkin tussa vaihtoehdossa letkun
tilalle asennetaan henkilökohtainen naamarisuodatin. Palatessa vaununun voidaan
jälleen liittyä vaunun kollektiiviseen suojajarjestelmään.

Suojausjärjestelmä voi olla myös edellisten yhdistelmä. Vaunussa voidaan toimia
ilman naamaria niin kauan, kun vaunussa on ylipaine. Jos jokin luukku avataan,
on vaunun miehistön puettava suojanaamari ja liitetään se vaunun ilmastointi-
järjestelmään tai kiinnitetään siihen henkilökohtainen suodatin. Kuvassa 101 on
esitetty eräs panssarivaunun suojelujärjestelmä.

Jos ajoneuvoa ei voida ylipaineistaa, miehistön on käytettävä ABC-aseiden vaiku-
tuspiirissä henkilökohtaista suojavarustusta.

KUVA 101 Esimerkki taistelupanssarivaunun suojelujärjestelmästä

Vaunun panssarointi suojaa **gamma säteilyltä**, mutta ei neutronisäteilyltä. Neutronisäteily aktivoi metallin eli saa aikaan nk. jälkisäteilyn. Aktivoituvia me-
talleja ovat mm. rauta, nikkel, kromi ja molybeeendi. Välttämällä helposti
aktivoituvia alkuaineita voidaan jälkisäteilyn mahdollisuutta vähentää.
Panssarivaunun rakennemateriaalilin määrittävät kuitenkin muut tekijät kuin metallin
mahdollinen aktivoituminen.

Panssarivaunun ABC-suodatinjärjestelmä koostuu **keskipakopainetuuletattimesta** sekä
aerosoli- ja aktiivihiihissuodattimesta. Tuuletteen kuuluva sykloni pois-
taa suuret hiukkaset vaunun sisään tulevasta ilmasta. Ilmanottoaukko on varustet-
tu karkealta ainekselta suojaavalla verkolla.

Ilma voidaan johtaa tuuletimesta joko suoraan tai suodattimen kautta vaunun si-
sätiloihin, jolloin hermeettisesti suljetussa vaunussa syntyy 350 Pa:n eli 35
mmH₂O:n ylipaine. Sama tuuletin tuulettaa myös sisätilat ammuttaessa vaunun
tykillä, vaunukonekiväärellä tai rynnäkkökiväärellä. Jos ABC-uhkka ei ole, ilma
johdetaan ABC-suodattimen ohitse. Tällä saavutetaan parempi tuuletus ja pidenretään suodattimen käyttökää.

ILMA PAINETUULETTIMESTA

KUVA 102 ABC-radiaalisuodatin

5.3.6 Muut kollektiivisuojat

Huoneesta on mahdollista rakentaa ABC-suojat iiivistämällä se esimerkiksi polyteenimuovilla ja puhaltamalla sinne ylipaine. Muovi pidättää nesteitä ja höyryjä. Kuvassa 103 on esimerkki huonetilan muuttamisesta ABC-suojaksi.

KUVA 103 ABC-suojattu huonetila

Saastuneet varustusteet ja suojavälineet riisutaan eteistilassa. Ennenkuin henkilö voi siirtyä ABC-suojaan, hänen täytyy olla eteisessä 2-3 minuuttia, jona aikana eteisen ilma ehtii vaihtua ja samalla puhdistua.

Tyypillisen ABC-suojateltan lattiapinta-ala on noin 30 m² ja tilavuus 75 m³. Suodattimen ja puhaltimen koko mitoitetaan tilaa käytettävän henkilömäärän mukaan. Jos tilassa toimii 10 henkilöä, on ilmaa tuotettava 60 m³/h. Jos samaa ABC-suojatua tilaa käytetään pelkästään lepotilana, siihen voidaan majoittaa noin 30 henkilöä. Teltan materiaalina on PVC-muovi, joka peitetään Saranex-pressulla. Teltta antaa hyvän suojan kemiallisia ja biologisia taisteluaineita sekä säteilypölyä vastaan.

ABC-suojatuissa koneissa voi työskennellä 4-5 ihmistä. Tällaiseen tilaan riittää 25 m³/h ilmaa tuottava suodatin. Kontin tulee olla tiivis, jotta sen sisälle saadaan ylipaine. Suoja- ja käyttöominaisuksia voidaan parantaa varustamalla kontti ABC-eteisellä tai sulkuteltalla ja peittämällä se Saranex-pressulla.
VI LUKU
PUHDISTAMINEN

6.1 PUHDISTAMISEN PERusteet

Puhdistamisella tarkoitetaan henkilöstön, kaluston ja maaston puhdistamista säteilypölystä tai biologisista ja kemiallisista taisteluaineista. Sen päämääränä on saastuneen henkilöstön toimintakylvyn sekä välineiden, materiaalin ja tärkeimpien kohteiden käytettävyyden palauttaminen. Aika ajoin toteutettava puhdistaminen on välttämätöntä toimittaessa taisteluaineiden saastuttamassa ympäristössä.

Puhdistus on välttämätön, mutta samalla raskain ja hankalain taisteluainesuojelun osa-alue. Tämä on todettavissa varsinkin silloin, jos joudutaan puhdistamaan raskasta kalustoa, asuinrakennuksia tai maastoaa. Ilman riittävää osaamista, tehokkaita puhdistusaineita ja -kalustoaa sekä toimintavarmoja puhdistusmenetelmiä parhaimmillaan suojavarusteet menettävät merkitystään.

Jouduttaessa taisteluaineheökkäykseen kohteeksi tai niiden vaikutusten piiriin on ensimmäinen toimenpide nopea hengityksen ja ihon suojaaminen. Iholle ja varusteisiin sekä toiminnassa tarvittavien välineiden pinnalle tulleet taisteluaineroiskeet tai pisarat sekä säteilypöly on poistettava välittömästi. Myös ilmakaasu kannattaa puhdistaa iholta ja taisteluvälineistä, vaikka puhdistamisen tarve onkin vähäisempi kuin edelläkuvatussa tilanteessa. Raskaan kaluston, rakennusten ja maaston puhdistamisen laajuus sekä tarve on harkittava tapauskohtaisesti.

6.1.1 Puhdistaminen sateilypölystä

Sateilevän pölyn partikkelikoko on suurempi lähilaskeuma- kuin kaukolaskeuma-alueella. Tästä johtuen lähilaskeuman alueella voidaan em. varsin yksinkertaisilla puhdistustoimenpiteillä piententää keholle aiheutuvaa sateilyrasitusta 80–90 %, kaukolaskeuma-alueella vastaavin toimenpitein aikaansaattava vähennemä on 60–80 %.
Säteilyä aiheuttavat atomit ovat pääasiassa kondensoituneet pölypartikkelien pinnalle, eivätkä ne haja. Puhdistuksessa pölypartikkelit siirretään **fysikaalisesti** paikasta toiseen, joten säteilyn kokonaismäärä ei vähene. Saastuneen maan siirtäminen esimerkiksi poteron ympäristöstä vähentää kuitenkin taistelijan saamaa säteilyannostaa huomattavasti. Laajoja laskeuma-alueita ei voida käyttää täysipainoiseesti, ennenkuin säteilyn kokonaismäärä alueella on laskenut hyväksyttäviin rajoihin.

6.1.2 Puhdistaminen biologisista taisteluaineista

Biologiset taisteluaineet ovat yleensä eläviä organismeja, joiden torjuntaan soveltuvat normaalit desinfiointi- ja puhdistusmenetelmät.

Puhdistusmenetelmät voidaan jakaa **mekaanisissa, fysikaalisissa ja kemiallisissa** menetelmiin. Puhdistusmenetelmä valitaan taudinaiheuttajan perusteella. Itiömuodossa olevat sienet ja bakteerit edellyttävät huomattavasti tehokkaampia puhdistusmenetelmiä kuin tavanomaiset bakteerit tai virukset.

Mekaanisissa puhdistusmenetelmissä taudinaiheuttaja siirretään sitä tuhoamatta sellaiseen paikkaan, jossa se ei aiheuta tartuntavaaraa. Esimerkiksi juomaveden suodattaminen on mekaanista puhdistamista. Hyvä henkilökohtainen hygienia ja yleinen puhtaus vähentävät mikrobiikkantaa ja pientävät sairastumisriskiä.

Lämpökäsittely ja säteilyttäminen ovat tavallisimmat fysikaaliset puhdistusmenetelmät. Mikäli mikrobit halutaan tuhota täydellisesti, vaaditaan kuivissa oloissa kahden tunnin käsittely 160 °C:n lämpötilassa. Vähintään 120 °C:een lämpötilaan kuumennetulla höyryllä päästään samaan tehoon 20 minuutissa. Mikroorganismit itiöitä lukunottamatta sekä useimmat virukset tuhoutuvat kiehuvassa vedessä jo 15 minuutissa.

Useimmat mikrobit tuhoutuvat auringosta maahan ulottuvan ultraviolettisäteilyn sekä kuivattavan tuulen ja lämmön yhteisvaikutuksesta. Kuvassa 104 on yhteenveto eräiden fysikaalisten puhdistusmenetelmien vaikutuksesta mikroben torjunnassa.
<table>
<thead>
<tr>
<th>Menetelmä</th>
<th>Itiöt</th>
<th>Veg bak.</th>
<th>Virukset</th>
<th>Riketsiat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vesihöyry 120 °C, 20 min</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Vesihöyry 100 °C, 15 min</td>
<td>-</td>
<td>+</td>
<td>(+)</td>
<td>+</td>
</tr>
<tr>
<td>Kuivalämpö 160 °C, 2 h</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Kuivalämpö 120 °C, 30 min</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>UV-säteily</td>
<td>-</td>
<td></td>
<td></td>
<td>+</td>
</tr>
</tbody>
</table>

Selite
+ soveltuu
- ei sovellu

KUVA 104 Eräiden fysikaalisten puhdistusmenetelmien vaikutus mikrobeihin

Kemiallisissa menetelmissä mikro-organismit tuhotaan nestemäisillä, kaasumasilla tai aerosolimuodossa olevilla kemikaaleilla. Puhdistusmenetelmän tehokkuuteen vaikuttavat kemikaalin ominaisuksien ohella myös ulkoiset tekijät kuten puhdistettava kohde, lämpötila ja kemikaalin vaikutusaika.

<table>
<thead>
<tr>
<th>Puhdistusaine</th>
<th>Pitoisuus</th>
<th>Torjuttava mikrobi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kaasu/aerosoli</td>
<td>neste %</td>
</tr>
<tr>
<td>Fenoli</td>
<td>-</td>
<td>0,5 - 3,0</td>
</tr>
<tr>
<td>Alkoholi</td>
<td>-</td>
<td>70</td>
</tr>
<tr>
<td>Kvartieeriset ammo-niumyhdisteet</td>
<td>-</td>
<td>0,1 - 1,0</td>
</tr>
<tr>
<td>Klooriheksidi</td>
<td>-</td>
<td>0,05-0,5</td>
</tr>
<tr>
<td>Kloori</td>
<td>-</td>
<td>0,1 - 5</td>
</tr>
<tr>
<td>Jodi</td>
<td>-</td>
<td>0,01 - 2</td>
</tr>
<tr>
<td>Formaldehydi</td>
<td>3 - 10</td>
<td>3 - 8</td>
</tr>
<tr>
<td>Glutardehydi</td>
<td>3 - 5</td>
<td>1 - 2</td>
</tr>
<tr>
<td>Eteneiksidi</td>
<td>400-1000</td>
<td>-</td>
</tr>
<tr>
<td>Beetapropionlaktoni</td>
<td>2 - 10</td>
<td>-</td>
</tr>
</tbody>
</table>

Selite
+ tehovaikutus hyvä
(+) tehovaikutus kohtalainen
± tehovaikutus vaihtelee virustyyppittäin
- tehovaikutus huono

KUVA 105 Eräiden puhdistus kemikaalien tehokkuus mikrobien torjunnassa

Itiöitä muodostamattomat mikro-organismit voidaan tuhota suhteellisen lyhyessä ajassa. Itiöiden torjunta sitävastoin vaatii tehokkaita kemikaaleja ja pitkän vaikutusaajan. On huomattava, että useat mikro-organismien torjuntakemikaalit ovat haital-

Taulukossa esitetty tehovaikutusket perustuvat suositeltaviin vaikutusaikoihin, jotka ovat itiöille 2-4 tuntia, viruksille 5-60 minuuttia sekä vegeratiivisille bakteereille ja riketsioille 2-10 minuuttia.

6.1.3 Puhdistaminen kemiallisista taisteluaineista

Fysikaalisia menetelmiä ovat esimerkiksi taisteluaineiden imeyttäminen eli adsorbointi, liuottaminen, pesu, saastuneen kohdan poistaminen, haihduttaminen ja peittäminen.

- Fullerin maata
- bentonitiittia
- silikageelia (kieselgur)
- talkka
- titaanidioksidia
- magnesiumoksidia
- kalsiumoksidia
- TCAH:ta (tetraalksiumalumiinihydraatti)
- vehnäjauhoa
- aktiivihiiltä sekä
- useita eri hartseja (polymeerit).
Ainetta, joka imeyttäisi kaikki taisteluaineet tehokkaasti ja palautumattomasti ei ole olemassa. Parhaaseen tulokseen päästään erilaisilla sekoituksilla ja muuntelemalla tunnettujen imeytysaineiden kemiallista rakennetta. Esimerkiksi hopeaioneilla käsitelty Fullerin maa olisi erinomainen adsorbentti sariinille, tabuunille ja sinappikaasulle, sen massamainen valmistaminen ei kuitenkin ole taloudellisesti kannattavaa.

<table>
<thead>
<tr>
<th>Taisteluaine</th>
<th>Liuotin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Halogeenihiiilivedyt (mm freoni)</td>
</tr>
<tr>
<td>Typpisinnappikaasu</td>
<td>+++</td>
</tr>
<tr>
<td>Rikkisinnappikaasu</td>
<td>+++</td>
</tr>
<tr>
<td>Somaani</td>
<td>+++</td>
</tr>
<tr>
<td>VX</td>
<td>+++</td>
</tr>
<tr>
<td>Sariini</td>
<td>+++</td>
</tr>
</tbody>
</table>

Selite: +++ Erinomainen liukenevuus, ++ Hyvä liukenevuus, + Kohtalainen liukenevuus, - Huono liukenevuus

KUVA 106 Taisteluaineiden liukenevuus eri liuottimiin

Kuten taulukosta on luettavissa, ovat halogeenihiiilivedyt ja hiilivedyt parhaita liuottimia.

Taisteluaineiden poistamiseen käytetään yleensä vettä, johon lisätään veden pinta-aktiivisuutta alentavia ja taisteluaineen liukenevuttua parantavia aineita eli tensidejä. Tensidit ovat rakenteeltaan pitkäketjuisia hiilivyjä. Niiden toinen pääh on rasvaluikoinen ja toinen pääh vesiliukoinen eli ne ovat ns. dipolaarisia. Taisteluaineet tarttuvat tensidien rasvaluikokeiseen osaan, jolloin ne sekoittuvat veden joukkoon. Tensidi voi olla kationaktiivinen, anioniaktiivinen tai ioniton.
Kun veteen sekoitetaan sopivassa suhteessa liuotinta, tensidia ja tehoaineita, saadaan aikaan emulssio tai mikroemulssio. Ensimmäinen ABC-puhdistukseen tarkoitettu emulssio kehitettiin 1980-luvun alkupuolella. Siinä oli
- vettä 76 %
- tetrakloorieteeniä 15 %
- Marlowett-tensidiä 1% ja
- kalsiumhypokloriittia 8%.

Ympäristölle haitallinen tetrakloorietyleeni on nykyisin korvattu ksyleenilla. Koostumusta on muuttettu siten, että se soveltuu entistä paremmin eri materiaaleille ja käytettäväksi myös talviolosuhteissa.

Koska useimpien taisteluaineiden kiehumispiste on korkea (yli 150°C), on niiden haihtuvuus normaalioloissa vähäistä. Poikkeusena on sarini, joka haihtuu nopeasti maastosta jo -10 °C ... +20°C:n lämpötilassa.

Puhdistaminen kuumalla ilmalla tai vesihöyryllä perustuu taisteluaineiden haihduttamiseen sekä kuuman vesihöyryn liuottavaan vaikutukseen. Vesihöyryn pintajännitys ja viskositeetti ovat huomattavasti alhaisempia kuin lämpimän veden. Koska kuuman ilman tai vesihöyryn tuottaminen vaatii paljon energiaa, menetelmän käyttö on perusteltua vain lämpimissä olosuhteissa.
Alle +10 °C:ssa suurin osa puhdistuksessa käytetystä lämpöenergiasta kuluu pintojen lämmittämiseen. Tällöin varsinkin sitkostettujen taisteluaineiden puhdistustulos jää heikoksi.

Mikäli taisteluaine halutaan muuttaa vaarattomaksi yhdisteeksi, käytetään kemiallisia puhdistusmenetelmiä. Näitä ovat vedellä hajottaminen eli hydrolyysi sekä hapettaminen.

Puhdistamisessa ei ole suotavaa käyttää voimakkaita emäksiä (pH>12) eikä hoppamia liuoksia (pH<4). Happamat liuokset ovat haitallisempia materiaaleille kuin emäksiset, koska ne edistävät korroosioita.

<table>
<thead>
<tr>
<th>Puhdistusaine</th>
<th>Tehovaikutus</th>
<th>Ominaisuudet</th>
<th>Käyttökohteet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natriumhydroksidi, 2-10 natriumhydroksidiliiuos</td>
<td>pH 14, hydrolysoi taisteluaineet</td>
<td>Voimakas emä, syövyttävä, korinrodoiva</td>
<td>Raijotetusti kaluston puhdistukseen</td>
</tr>
<tr>
<td>Karbonaatit, 5-10 %:sina vesiliuoksina</td>
<td>pH 8-10, hydrolysoi taisteluaineet</td>
<td>Lievästi emäksiinen, ei sovellu VX:lle, hajoamistuoote yhtä myrkyllinen kuin VX</td>
<td>Kaluston ja ihon sekä henkilökohdaisten varusteiden puhdistamiseen</td>
</tr>
<tr>
<td>Alkoholaattit, tavallisimmin 30 % NaOH ja 70 %</td>
<td>Hydrolysoi taisteluaineet</td>
<td>Voimakkaita, emäksiä, syövyttävät</td>
<td>Kaluston puhdistukseen</td>
</tr>
<tr>
<td>alkoholia</td>
<td>Muostaa superemäksen, syövyttävä ja myrkyllinen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS-2/NATO, sis 2 % NaOH 20 % metoksietanolli, 78</td>
<td>pH > 14 hydrolysoi taisteluaineet, vai-</td>
<td>Muodostaa superemäksen, syövyttävä ja myrkyllinen</td>
<td>Kaluston puhdistukseen</td>
</tr>
<tr>
<td>% dietyylitriamiini</td>
<td>kutusaika 30 min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natriumfenolaattti tai -kresolaattti laimeana</td>
<td>Hydrolysoivat saariin ja somaanin, mutta ei sinappikaasua</td>
<td>Lievästi emäksiisiä</td>
<td>Ihon puhdistukseen</td>
</tr>
<tr>
<td>liuoksena</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natrium- ja kalsiumhypokloriiti tai -kloriitti,</td>
<td>Hajottavat taisteluaineita emäksiisiä olosuhteissä</td>
<td>Syövyttävät ja korrodoiuvat materiaaleja</td>
<td>Kaluston puhdistukseen. Kloorikalkki myös ihon puhdistukseen imetyysaineiden kanssa</td>
</tr>
<tr>
<td>kloorikalkki</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kloramiinit</td>
<td>Hajottavat taisteluaineita emäksiisiä olosuhteissä</td>
<td>Siisältää korrodoiuvaa vapaa kloria</td>
<td>Ihonpuhdistukseen soveltuvia</td>
</tr>
<tr>
<td>- monokloramiinit B ja T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- dikloramiinit B ja T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Na-N,N-diklori-iso-syannoureaatta (Fiscor)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Käyttö laimeina vesiliuoksina</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Otsoni, käyttö kaasumaisena</td>
<td>Hajottaa taisteluaineet</td>
<td>Suurina pitoisuksina myrkyllinen</td>
<td>Soveltuu erityiskohteisiin, veden ja maan puhdistamiseen rajoitetusti</td>
</tr>
<tr>
<td>Natriumperboraatti pulverina tai vesiliuoksena</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permanganaatti</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Otsoni kiinteä KHSO₅</td>
<td>Voimakas hapentin</td>
<td>Heikko happo</td>
<td>Soveltuu ihon puhdistukseen</td>
</tr>
<tr>
<td>RD-2, maaöljypohjainen sis kalimyhydroksidia</td>
<td>pH n 13, hydrolysoi taisteluaineet</td>
<td>Emäksiinen, syövyttävä, sisältää hai-tallisia liuottomia</td>
<td>Kaluston puhdistukseen</td>
</tr>
<tr>
<td>(venäl)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SF-2U (venäl)</td>
<td>Likaa irrorttava saippualiuos</td>
<td>Lievästi emäksiinen</td>
<td>Säteilypölyn pois-tamiseen kaluston pinnoilta</td>
</tr>
<tr>
<td>Puhdistusliuos (venäl), kesäliuos sisältää 10 %</td>
<td>pH 14, hydrolysoi G-kaasut, tehoa heikommin sinappikaasua sekä</td>
<td>Voimakas emä, syövyttävä, ammo-</td>
<td>Kaluston puhdistamiseen</td>
</tr>
<tr>
<td>NaOH, 25 % monootanoliaminia (MEA) ja 65 %</td>
<td></td>
<td>niakkin määrä tal-</td>
<td></td>
</tr>
<tr>
<td>vettä. Talviliuos 2 % NaOH, 5 % MEA, 93 %</td>
<td></td>
<td>villiuoksessa riippu</td>
<td></td>
</tr>
<tr>
<td>ammoniakki + vesi</td>
<td></td>
<td>pakkasesta</td>
<td></td>
</tr>
</tbody>
</table>

KUVA 107 Kemiallisesta puhdistuksesta soveltuvia kemikaaleja ja niiden ominaisuuksia

6.2 HENKILÖPUHDISTAMINEN

Henkilöiden puhdistaminen on aina kaikkein tärkeintä. Mikäli iholle, vaatteille tai kosketuspinnalle on joutunut taisteluaineepisaroita, ne on välittömästi käsiteltävä puhdistuspulverilla tai pyyhittävä pois. Mitä nopeammin pisarat saadaan pois ihon pinnalta, sitä lyhyemmäksi jää altistumisaika ja sitä pienemmäksi jäävät myrkytysoireet. Häättilanteissa puhdistamiseen voidaan käyttää mitä tahansa nopeasti saatavilla olevia aineita kuten talkkia, vehnäjauhoja, saippuaa ja vettä.

Ihmisen iho koostuu kolmesta kerroksesta, jotka ovat orvaskesi, verinahka sekä ihonalainen kudos. Ihon pintaan peittää talirauhasten erittämä rasvakerros, joka koostuu pääasiassa vahoista ja kolesterolista.

KUVA 108 Mikroreitti taisteluaineiden imeytymiselle sarveiskerroksen läpi kohti verenkiertoa

Esipuhdistuksen tavoitteena on taisteluaineiden vaikutusten koetteksi joutuneiden henkilöiden toimintakyvyn säilyttäminen siihen asti, kunnes on mahdollista järjestää täydentävä puhdistus.

<table>
<thead>
<tr>
<th>Puhdistuspulveri</th>
<th>Koostumus</th>
<th>Käyttö ja vaikutus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dutch Powder</td>
<td>Kloorikalkki 65 %</td>
<td>Soveltuu BC-taisteluaineiden, imeytyä ja hajottaa. Käytetään sirottamalla pulveja kohteeseen, riittävyyys 60 g/4-6 m</td>
</tr>
<tr>
<td>M 291 (USA)</td>
<td>Grafitoitu hartsi, johon on imeytyy happo- ja emäsrhymiä</td>
<td>Soveltuu C-taisteluaineelle, imeytyä ja hajottaa. Käyttö puhdistustyynnä, riittävyyys 2 tyyyä/1 puhdistuskerta (henkilö + varusteet)</td>
</tr>
<tr>
<td>- Bentonittti</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Fullerin maa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Piimaa (erilaisia)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

KUVA 109 Ihonpuhdistukseen soveltuvat puhdistuspulverit ja niiden ominaisuudet

Nestemäiset fenolaattien ja kresolaattien alkoholiliuokset puhdistavat tehokkaasti hermokasua. Sinappikaasujen puhdistamiseen soveltuvat parhaiten kloraminien alkoholiliuokset. Sellaisia puhdistusliuoksesta ei kuitenkaan ole, joka tehoisi kaikille taisteluaineille. Tästä ja osittain myös huonosta säilyvyydestä ja käyttö-
ominaisuuksista aiheutuvista ongelmaista johtuen henkilökohtaisessa esipuhdistuksessa ei nestemäisiä puhdistusliuoksia enää juurikaan käytetä.

Polyetylene glykolipohjaiset voiteet, joissa reaktiivisena komponenttina on kalium 2,3-butadienimono-oksimaatti, antavat ennalta käytettyynä suojaan kemiallisia taisteluaineita vastaan. Niitä voidaan käyttää myös lääkinnässä tehostamaan taisteluaineiden hajottamista ihon syvemmässä kerroksissa. Voiteet ovat tehokas lisäpuhdistusjärjestelmään, mutta ainoaksi esipuhdistusmenetelmäksi ne eivät sovellu. Kehitteillä on tehokkaita, selektiivisesti toimivia ihon puhdistuspuhdisteita, jotka hajottavat taisteluaineita entsymaattisesti.

Maastokaasuista ja biologisista taisteluaineista saastuneille joukoille on mahdollisimman nopeasti järjestetävä täydentävä puhdistus. Täydentävä puhdistus suoritetaan aina puhtaalla alueella ja sen järjestämisestä vastaa tavallisimmin suojuellu kompannia. Puhdistukseen kuuluu peseytyminen suihkussa sekä varusteiden puhdistus tai niiden vaihtaminen. Peseytymisen yhteydessä käytetään tarvittaessa ihonpuhdistuspuhdisteita. Mikäli joukon saama säteilyannos noussee lähelle käsiketä arvoa, on joukko siirrettävä pois laskeuma-alueelta ja järjestetävä sille täydentävä puhdistus.

6.3 VARUSTEIDEN JA KALUSTON PUHDISTAMINEN

Joukkojen mahdollisuudet varusteiden, välineiden, aseiden ja ajoneuvojen esipuhdistamiseen ovat rajoitettu. Tavoitteena on, että saastuneella alueella toimiva joukko pystyy puhdistamaan välineensä siten, että niitä voidaan käyttää suojavaarustuksesssa. Henkilökohtainen ase, työväline, viestiväline tms. puhdistetaan suojanaamarilaukussa (vast) olevilla puhdistusvälineillä. Raskaat aseet ja ajoneuvot puhdistetaan ase- ja ajoneuvokohtaisilla puhdistusvälineillä ja samoilla puhdistusaineilla, joita käytetään täydentävää puhdistuksessa.

Varusteiden täydentävä puhdistus voidaan tehdä joko keittämällä niitä 80-90 °C:ssa vedessä, johon on lisätty BC- taisteluaineita hajottavia esim. vapaata klooria sisältäviä puhdistusaineita, tai käsittelemällä niitä kuumalla ilmalla tai vesihöyryllä.

Elektronisten ja optisten laitteiden puhdistamiseen soveltuu parhaiten käsittely freonilla. On kuitenkin huomattava, että freonit vahingoittavat ympäristöä.

Raskaan kaluston täydentävä puhdistaminen tapahtuu niinikään suojelukomppanian perustamilla puhdistuspaikoilla. Nykyaiset puhdistuskalustot ovat nopeasti toimintakuntoon saatettavia, ajoneuvoasenteisia ja vähän työvoimaa vaativia.

Puhdistettaessa maastokaasuista tai biologisista taisteluaineista saastuneita ajoneuvoja tulee erityistä huomiota kiinnittää oivien kahvoihin ja reunuksiin, astinlauotoihin sekä niihin kohtiin, joiden kanssa henkilöstö joutuu tekemisiin. Alustan tai pyörikoteloiden puhdistus ei aina ole tarpeellista, koska ne puhdistuvat jonkin verran jo siirtymisen aikana. Alustassa olevat taisteluainemäärät ovat yleensä myös melko pieniä ja pölyn ja lian peitossa, jolloin niiden haihtuminen on vähäistä. Säteilypölystä saastuneen ajoneuvon sisätilat on puhdistettava huolellisesti.

KUVA 110 Liuotinaineen levittäminen

KUVA 111 Puhdistusajoneuvo
6.4 MAASTON JA ERTYISKOHTEIDEN PUHDISTAMINEN

Maastokaasusta saastuneen tien puhtistamiseen voidaan käyttää nokkapumpulla varustettua säiliöautoa, jolla tien pinnalle levitetään kloorikalkki- tai laimeaa hypokloriittiliuosta. Säteilypölyn poistamiseen riittää pelkkä vesi ja pesuaine. Pesuaine irrottaa säteilypölyä keränneet rasva- ja nokihiukkaset tien pinnasta ja vesi kuljettaa ne ojiin tai viemäreihin.

Maastokaasusta saastunut alue voidaan peittää ensin kloorikalkkiliiteellä ja sen jälkeen puhtaalla täytteiekalla tai muulla maa-aineksella.

Kiitoradan tai tukikohdan puhtistamiseen soveltuu emulsio tai kloorikalkkiliete. Lentokone, laivan kanssi ja muu suurehko kohde voidaan puhtistaa emulsiopuhtistusaineella. Säteilypöly puhtistetaan vedellä ja puhtistusaineilla.

Taisteluaineita hajottavien entsyymien ja mikrobien käyttö saattaa lähivuosina tulla varteenotettavaksi puhtistusmenetelmäksi maaston ja suurten kohteiden puhtistuksessa.
KUVA 112 Suojasuikut toiminnassa
VII LUKU
SUOJELULÄÄKINTÄ

7.1 SÄTEILEYSAIRAUKSIEN ENSIAPU JA HOITO

Säteilevän aineen saastuttama iho on puhdistettava mahdollisimman nopeasti ja
pystävä runsaalla lämpimällä vedellä ja saippualla. Useimmissa tapauksissa edel-
lämäinittu puhdistus on riittävä. Kovien harjojen käyttöä on vältettävä, jotta sätei-
levät hiukkaset eivät pääsisi syntyvien ihovaurioiden kautta aiheuttamaan sisäistä
kontaminaatiota. Mikäli iho vaatii perusteellisempaa puhdistusta, se tehdään
sairaalahoidossa.

Leukemian ja muiden myöhemmin ilmenevien syöpäsairauksien hoitoon käyte-
tään lääkkeitä, joista esimerkkinä mainittakoon sytostaatit, sekä leikkaus- ja sädé-
hoitoa.

7.2 B-ASEIDEN AIHEUTTAMIEN SAIRAUKSIKEN ENSI-
APU JA HOITO

Biologisen aseen aiheuttamia sairaauksia hoidetaan kuten luonnollisesti esiintyviä
infektiotauteja. Hoidossa käytetään taudin aiheuttajana vaikutavia ja potilaan yleis-
tilaa kohentavia lääkkeitä. Yleishoito riippuu taudin oireista. Jos potilaalla on kork-
kea kuume, hänelle voidaan antaa kuumelääkettä.

Pitkä oireeton aika ja yleensä lievättä alkukoireet vähentävät etulinjassa annettavan
ensiavun tarvetta. Potilaat ehditään, mikäli taistelutilanne sallii, evakuoida joukko-
sidontapaikalle tai kenttäsairaalaan. Ensiapu- ja ensihoitotoimina kyseeseen tule-
vat potilaan puhdistaminen, lepo, ripulitapauksissa korvaavan nesteen antaminen
joko suun kautta tai suoneen sekä lääkehoidon mahdollisimman nopea aloittami-
nen.

Taudinaiheuttajan tuhoamiseen käytetään antibioottuja ja kemiallisesti valmis-
tettuja lääkeaineita eli antimikrobilääkkeitä, joita on erityisesti bakteeritauteja
vastaan. Alkueläin- ja sienitautien hoitoon soveltuvien lääkkeiden valikoima on
suppeampi. Vain harvat lääkkeet tehoavat virusten aiheuttamiin sairauksiin. Niiden
hoidossa voidaan kuitenkin rajoitetusti käyttää hyväksi ihmisen tai eläimen
verestä saatavaa immunoglobuliniä. Paras teho saavutetaan, jos immunoglobulini
on sellaisen henkilön verestä, joka on sairastanut kyseisen taudin äskettäin. Samaa
hoitoa voidaan käyttää myös eräissä toksiinimyrtkyksissä, joissa se voi olla ai-
noa spesifinen hoitomenetelmä. Kuvassa 113 on esitetty eräitä B-agenttien aihe-
uttamien tautien hoidossa käytettyjä lääkkeitä.
### Lääke	Tauti
Penisillini | Mm. pernarutto
Tetrazykliinit | Mm. rutto, tularemia, riketsiat
Streptomysiini | Rutto, tularemia
Gentamysiini |
Fluorokinoloniit | Lavantauti, pernarutto ym.

KUVA 113 Tärkeimmät B-asetorjunnassa käytettävät lääkkeet

7.3 KEMIALLISTEN TAISTELUAINEIDEN AIHEUTTAMIEN Vammojen Ensiapu ja Hoito

Hengitysleimien ja paljaiden ihonkohtien nopea suojamaaminen sekä yhden - kahden minuutin kuluessa suoritettava esipuhdistaminen vähentää oleellisesti kemiallisten taisteluaineiden aiheuttamia vammoja.

Ensiapu ja lääkehoido riippuva siitä, minkä taisteluaineen kohteeksi potila on joutunut, mitä kautta altistuminen on tapahtunut ja kuinka suuri taisteluaainepitoisuus on ollut. Varsinaisen hoidon aloittamiseen tarvitaan ammattitaitoista lääkintähenkilöstöä, joten se on mahdollista vasta joukkosidontapaikalla.

Taistelukaasuista saastuneet potilaat tulee puhdistaa ennen varsinaisen hoidon aloittamista. Tämä edellyttää puhdistuspaikan perustamista hoitopaikan yhteyteen sekä suojelu- ja lääkintäjoukkojen yhteistoimintaa.

7.3.1 Hermokaasumyrkytys

Jos **hermokaasua** on saatu hengitysteiden kautta, ilmenevät myrkytysoireet ensimmäisten minuuttien aikana. Ihon kautta saadun myrkytyksen oireet ilmenevät muutamien kymmenien minuuttien kuluessa. Hermokaasumyrkytyksen kliininen kuva voidaan jakaa kuvassa 114 esitetyllä tavalla kolmeen asteeeseen.

Alkuoireina ovat pupillien supistuminen, runsas syljen muodostuminen, kyynelvuoto, näköhärjot, lihasten värinä ja nykiminen sekä yskiminen, joka johtuu limanerityksen lisääntymisestä keuhkoputkissa. Jos entsyymitaso laskee noin 10 %:iin normaalista, kyseessä on hengenvaarallinen myrkytystila, joka ilmenee hengityksen vaikutumisena tai pysähtymisenä sekä lihaskouristuksina. Kaikki oireet eivät välttämättä esiinny samalla potilaalla.
Table:

<table>
<thead>
<tr>
<th>Aste</th>
<th>Annos</th>
<th>Latenssi-aika</th>
<th>Kesto</th>
<th>Oireet</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Lievä myrkytys</td>
<td>1/10</td>
<td>10 - 15 minuuttia</td>
<td>1-5 vuorokautta Pupillien supistuminen, vuoto nenästä, voimakas syljen erittyminen, päänsärky, hengitysvaikutukset, puristava tunne rinnassa, ruokahaluttomuus, ahdistuneisuuden ja tuskaisuuden tunne, hikoilu, unettomuus, keskitymyskysyn puute</td>
</tr>
<tr>
<td>II</td>
<td>Keskin-kertainen myrkytys</td>
<td>1/5</td>
<td>5 minuuttia</td>
<td>1 - 2 vilkkoa Yllämäinut oireet voimakkampina, lisäksi oxentaminen, sitkeään vaahdomaisen liinan yksiminen, lihaskouristukset, epäasennollinen hengitys</td>
</tr>
<tr>
<td>III</td>
<td>Vaikea myrkytys</td>
<td>1/3 - 1/2</td>
<td>Ei lainkaan tai aivan lyhyt</td>
<td>1 - 12 tuntia Oireet kuten yllä, mutta ilmenevät nopeammin, pupillit eivät reagoi, paineen tuntu silmissä, voimakkaita kouristukset, halvaantuminen, kuolema</td>
</tr>
</tbody>
</table>

KUVA 114 Hermokaasumyrkytysen kliininen kuva

Ensiapuna hermokaasumyrkytysessä käytetään jokaisen taistelijan varustukseen kuuluvaa vastalääkkeenantolaitetta. Lääke, joka sisältää 2 mg atropiinia ja 175 mg obidoksiimia, annetaan syvälle reisilihakseen. Laite ja sen käyttö on esitetty kuva 115.

KUVA 115 Vastalääkkeenantolaite painetaan voimakkaasti reittä vasten, laukaisetaan ja pidetään paikallaan 10 sekunnit

7.3.2 Sinappikaasumyrkytys

Sinappikaasumyrkytystä vastaan ei ole tehokasta ensiapu- eikä hoitomuotoa. Näin ollen sinappikaasun pääsyn estäminen iholle, hengitys- ja ruuansulatuselimien sekä sinappikaasupisaroiden nopea poistaminen paljaalta iholta ja silmistä ovat parhaita keinoja lievittää myrkytystä. Sinappikaasuhyökkäyksen kohteeksi joutuneille on aina järjestetävä täydentävä puhdistus.

Sinappikaasumyrkytysken oireet ilmenevät vasta tuntien jopa vuorokausisen kuluuttua. Lievissä myrkytystapauksissa potilaalla on ihon punotusta ja kirvelyä, yskää, nuhaa ja voimakasta kyynelevuotoa, jos myrkyyä on mennyt silmiin. Lievät vammat eivät vaadi jatkohoitoa.

Vakavan sinappikaasumyrkytysken oireita ovat silmien tulehtuminen, näkökyyn menetyys, iholle muodostuvat rakkulat, pahoinvointi sekä hengitysvaikeudet. Havat ja rakkulat voivat tulehtua ja märästä, joten niiden hoito on vaikeaa ja vie jopa kuukausia. Pahimmillaan myrkytys voi johtaa kuolemaan. Vielä vuosia altistumisen jälkeen voi ilmetä häiriöitä hermostossa, silmissä ja ruuansulatuselimissä.

Myrkytysken yleisöireita voidaan lieventää mahdollisimman nopeasti, mieluiten tunnin kuluessa altistumisesta, annettavalla natriumtiouosaatilla tai asetyylikkiysteiniillä. Potilaan myöhempää hoitoa muistuttaa palovammojen hoitoa. Tulehduksia vastaan käytetään antibioootteja.

7.3.3 Syyanivety

Syyanivetymyrkytysken oireet alkavat hyvin nopeasti altistumisesta. Lievän myrkytysken oireita ovat huimaus, päänsärky, rauhattomuus ja väsymys. Mikäli oireet menevät ohi 5-10 minuutissa, ei potilas yleensä tarvitse hoitoa.
Jos syaanivetypitoisuus on ollut korkea, potilaan hengitys aluksi voimistuu, jonka jälkeen heikkenee ja lopulta lakkaa 1-2 minuutin kuluessa altistumisesta. Samalla ilmenee lihaskouristuksia. Ongelmana on nopea ensiavun ja hoidon tarve. Tehokasta hoitoa kykenee antamaan ainoastaan lääkintähenkilöstö, koska lääkkeet annetaan laskimoon.

Ensiapulääkkeenä voidaan käyttää amyylinitriittiä esimerkiksi siten, että kämmenelle tai harsotaitokseen rikotaan 1-2 ampullia ja potilas hengittää sitä. Mikäli mahdollista annetaan potilaalle lisäksi 50 % happea.

Syaanivetymyrkytyksen lääkehoitona käytetään 4-dimetyylamidofenolia (4-DMAP) ja natriumtiosulfatta. Amyyllinitriitti ja 4-dimetyylamidofenoli aiheuttavat ns. methemoglobiinimuodon, joka puolestaan sitoo sylanidi-ionin ja estää myrkyvyvaikutuksen. 4-DMAP:n vaikutus on nopea, mutta ei pysyvä, minkä vuoksi lääkitystä on jatkettava antamalla natriumtiosulfattia laskimoon noin tunnin kuluttua.

7.3.4 Fosgeenimyrkytys

7.3.5 Kyynelkaasut

Kyynelkaasut, kuten CS, CN ja CR, aiheuttavat ärstystä silmissä ja ylähengitysteissä. Suurten pitoisuuksien hengittäminen saattaa johtaa keuhkopööhön.

Ensiaputoimena tavallisesti riittää siirtyminen kyynelkaasun vaikutusalueelta raattiiseen ilmaan ja kasvojen kääntäminen tuulta vasten. Silmät huuhdotaan vedellä. Mikäli potilaalla on voimakasta ihon ärstystä, myös iho tulee pestä.

Lääkehoito ei yleensä ole tarpeen. Jos altistuminen on ollut paha, jonka oireena on esimerkiksi useita tunteja ja itkunut ykskä, on potilas syyytää lääkintähenkilöstön tarkkailtavaksi.
7.4 PALOVAMMOJEN ENSIAPU JA HOITO

KUVA 116 Palovammojen laajuuden arviointi ns. yhdeksän prosentin säätöä käyttäen

Jos vähintään II asteen palovamman laajuus on yli 20 % ihon pinnasta, tarvitsee potilas nestehoitoa. Mikäli vammanautunut alue on yli 50 %, tarvitaan erityishoitoa, johon poikkeusoloissa ei aina ole mahdollisuutta. Ihon palovammojen hoitoa voivat vaikuttaa erityisesti suljetuissa tiloissa, kuten panssarivaunuissa, syntyvät, hengitysteiden palovammat sekä mahdollinen häkämyrkytys.

Ensimmäinen toimenpide on sammuttaa tuli tukahduttamalla se esimerkiksi petitteellä, kierittämällä potilasta maassa tai vedellä. Sammuttamisen jälkeen vamma-aluetta tulisi velleilla vileällä vedellä. Kenttäoloissa uhritta ei poisteta vaatteita, vaan hänet on käärittävä lämpimimillä peitteisiin hoitoon kuljettamista varten.
Mikäli palovamman on aiheuttanut valkoinen fosfori, on se kaivettava haavasta tai iholta puukolla tai muulla teräaseella. Ellei tämä ole mahdollista, on haava peitetävä kostealla kankaalla, joka on pidettävä fosforin uudelleen syttymisen estämiseksi kosteana niin kauan, kun potilas saadaan lääkintähenkilöstön hoitoon. Hoitoa tarvitseva potilas tulisi kuljettaa joukkosidontapaikalle 2 tunnin kuluessa vammautumisesta.

Joukkosidontapaikalla voidaan vammat arvioida tarkemmin sekä puhdistaa ja peittää ne palovammasiteillä. Jos ihosta on palanut yli 20 %, aloitetaan nestehoito ns. Ringerin liuoksella. Hoitoa kontrolloidaan seuraamalla virtsan eritystä.

Jos on syytä epäillä hengitysteiden palovammoja, tulee hengitysteiden aukipitämiseen kiinnittää huomiota. Tarvittaessa tehdään ns. intubaatio tai häätä laringotomia. Hengityspalovammoissa nestehoito aloitetaan aina, vaikka ihon palovammojen laajuus ei sitä edellyttäisikään.

Kipulääkitys kuuluu lähes aina palovammoja saaneen enselhoitoon. Hääämäisytyksen saaneen potilaan annetaan hengittää 100 % happa. Iholla oleva valkoinen fosfori inaktivoidaan suojelulääkintävarustuksen kuuluvalla kuparisulfaattiliuoksella ja poistetaan iholta sekä kudoksista esimerkiksi leikkausveisellä. Joukkosidontapaikalla palovammapotilaille tehtävät toimenpiteet on esitetty kuvassa 117.

| 1. Varmistetaan hengitysteiden aukipysyminen. |
| 2. Varmistetaan nestesiirtomahdollisuus asettamalla laskimokanyyli. |
| 3. Annetaan kipulääkkeenä morfiinia tai ketamiinia. |
| 4. Riisutaan vaatteet tai leikataan ne pois palovamma-alueelta. |
| 5. Arvioidaan vamma-alueen laajuus. |
| 7. Puhdistetaan vamma-alue. |
| 8. Kiedotaan vamman päälle kuiva palovammasidos. |
| 9. Aloitetaan nestehoito, jos yli 20 % ihosta palanut. |
| 10. Asetetaan tarvittaessa kestokatetri. |
| 11. Aloitetaan antibioottiprofylaksi pensilliinillä, jos yli 20 % ihosta on palanut. Varmistetaan tetanussuoja. |

KUVA 117 Hoitotoimenpiteet joukkosidontapaikalla
RADIOAKTIIVISUUDEN JA DOSIMETRIAN SUUREET

1. RADIOAKTIIVISUUDEN SUUREET

Aktiivisuus

Tietylä energiatilalla olevan radionuklidimääärän aktiivisuus A hetkellä t on tältä energiatilalta tapahtuvien spontaanimien ydinmuutosten lukumäärän odotusarvo dN jaettuna aikavälillä dt:

$$A = \frac{dN}{dt}.$$

Yksikkö: becquerel (Bq). 1 Bq = 1/s.

Esimerkiksi strontium-90 (^{90}Sr) lähteen aktiivisuus A on 55 MBq. Vanha, SI-järjestelmään kuulumaton yksikkö on curie (Ci). 1 Ci = 3.7×10^{10} Bq.

Aktiivisuuskate

Aktiivisuuskate A_s on pinnalla olevan radioaktiivisen aineen aktiivisuus A jaettuna pinta-alalla S:

$$A_s = \frac{A}{S}.$$

Yksikkö: Bq/m2.

Esimerkiksi cesium-137 (^{137}Cs) laskeuman aiheuttama aktiivisuuskate A_s maanpinnalle on 370 kBq/m2.

Aktiivisuuskonsentraatio

Aktiivisuuskonsentраatio c_A on nesteen tai tietyssä paineessa ja lämpötilassa olevan kaasun aktiivisuus jaettuna kyseisen nesteen tai kaasun tilavuudella V:

$$c_A = \frac{A}{V}.$$

Yksikkö: Bq/m3.
Esimerkiksi maidon jodi-131 (\(^{131}\text{I}\))-aktiivisuuskonsentraatio \(C_A\) on 2000 kBq/m\(^3\).

Puoliintumisaika

Radionuklidin (fysikaalinen) puoliintumisaika \(T_{1/2}\) on keskimääräinen aikavali, jonka kuluessa nuklidimäärän aktiivisuus laskee puoleen.

Yksikkö: s.

2. **DOSIMETRISET SUUREET**

Absorboitunut annos

Absorboitunut annos \(D\) on ionisoivasta säteilystä aineen massa-alkioon siirtynyt keskimääräinen energia jaettuna tämän alkion massalla dm:

\[
D = \frac{dE}{dm}.
\]

Yksikkö: **gray** (Gy). 1 Gy = 1 J/kg. Vanha, SI-järjestelmään kuulumaton yksikkö on rad. 1 rad = 0,01 Gy.

Absorbtioannosnopeus

Absorbtioannosnopeus \(D\) on aikavälin dt kuluessa absorboitunut annos dD jaettuna tällä aikavälillä:

\[
D = \frac{dD}{dt}
\]

Yksikkö: **Gy/s**.
Säteilytys

Säteilytys X on fotonien ilma-alkiossa tuottamien samanmerkikkisten varauksien summa dQ jaettuna ilma-alkion massalla dm:

$$X = \frac{dQ}{dm}$$

Nämä varaukset syntyvät, kun fotonin tässä ilma-alkiossa tuottamat elektronit ja positronit pysähtyvät täydellisesti ilmassa.

Yksikkö: coulombi kilogrammaa kohti (C/kg). Vanha, SI-järjestelmään kuulumaton yksikkö on röntgen (R). 1 R = 2,58 x 10^4 C/kg.

Säteilytysnopeus

Säteilytysnopeus X on aikavälin dt kuluessa tapahtunut säteilytyksen muutos dX jaettuna tällä aikavälillä:

$$X = \frac{dX}{dt}$$

Yksikkö: C/kg/s = A/kg.

Annosekivivalentti

Annosekivivalentti H on tulo

$$H = QD,$$

jossa D on kudokseen absorboitunut annos ja Q on ns. laatukerroin, jolla pyritään otamaan huomioon eri säteilylajien erilainen kyky aiheuttaa terveydellisiä haittavaikutuksia, erityisesti stokastisia myöhäisvaikutuksia.

Yksikkö: sievert (Sv) 1 Sv = 1 J/kg.

Vanha, SI-järjestelmään kuulumaton yksikkö on rem. 1 rem = 0,01 Sv.
SÄTEILYNLASKULEVYN KÄYTTÖOHJE

1. KÄYTTÖTARKOITUS JA PERUSTEET

Säteilynlaskulevyä käytetään ydinrajoitusten radioaktiivisen laskeuman vaikutuksien arviointiin.

Laskeumassa olevien säteilyaineiden lähetettämän gammasäteilyn keskimääräinen voimakkuus noudattaa yhtälöä

$$ R_i = R_i \times t^{-1.2} $$

jossa

- R_i = säteilyn voimakkuus ajan hetkellä t
- R_i = säteilyn voimakkuus 1 tunti rajoitusten jälkeen eli vertailuvoimakkuus ja
- t = aika tunteina rajoituksen jälkeistä

Säteilynlaskulevyn antamat arvot perustuvat ns. 7 - 10 sääntöön eli ajan seiskenkertaistuessa säteilyn voimakkuus heikkenee kymmenenteen osaan saa. Sääntö pitää paikansa 25 % tarkkuudella muutaman kuukauden ajan rajoitusten jälkeistä edellyttäen, että mittaus on tehty laskeuma-alueella sen jälkeen, kun säteilynvoimakkuus huippuarvonsa saavutettuaan alkaa laskea.

Kun laskeuma-alueella tehtyjen mittauksen perusteella tunnetaan säteilyn voimakkuus (annosnopeus) tietystä hetkellä rajoitusten jälkeen, säteilynlaskulevylä voidaan laskea allamainitut säteilyn heikkenemiseen ja säteilyannoksien liittyvää arviointa:

1. Säteilyn voimakkuus (annosnopeus) tietystä hetkellä rajoituksen jälkeestä lukien

2. Ajankohta rajoitusten jälkeen määrättyle säteilyn voimakkuudelle

3. Määrättyllä aikavälillä saatava annos ja

4. Aika tai ajankohta, jolloin määrätyn suuruuden annos saavutetaan.
2. SÄTEILYNLASKULEVYN RAKENNE JA KÄYTTÖ

Säteilynlastukelevy koostuu kolmesta levystä. Ulkolevyä asteikolta voidaan lukea säteilyn voimakkuus l. annosnopeus millisievertineä tunnissa tai kertynyt annos millisievertineä. Asteikolla on lukuarvot 0,1 - 10000.

Keskilevyä asteikolla on mittaushetken ajankohta räjähdyshetkestä luettuna 10 minuutista 30 viikoon. Keskilevyn asteikon lukema = mittaushetken ajankohtaa räjähdyshetkestä luettuna asetetaan kohdakkain ulkolevyn asteikon mittausarvoa (annosnopeutta) vastaavan lukemaan. Keskilevyn asteikolla siirrytään haluttuun ajankohtaan ja luetaan tulos ulkolevyn asteikolta.

3. **LASKUESIMERKKEJÄ**

3.1 *Säteilyn voimakkuuden määrittäminen*

Tehtävä: Säteilyn voimakkuus tienhaarassa B on 2,5 tuntia räjähdyksestä (R+21/2h) 300 milliSv/h. Mikä on ollut voimakkuus hettikellä R+1h?

Ratkaisu: Keskilevyn asteikolta 2,5 tunnin kohta ulkolevyn asteikon 300 mSv/h kohdalle. Luetaan keskilevyn nuolen ”1 tunti” kohdalta ulkolevyn asteikon lukema. Vastaus: 900 milliSv/h.

3.2 *Tiettyä säteilyn voimakkuutta vastaava ajankohta*

Tehtävä: Ydinräjähdyksen tapahtui klo 06.30. Klo 09.00 säteilyn voimakkuus (annosnopeus) pisteessä B oli 200 milliSv/h. Milloin annosnopeus on 50 milliSv/h?

3.3 *Määräaikana saatu annos*

Tehtävä: Hetkellä R + 2h mitattiin komppanian tulevalla ryhmitysalueella säteilyn voimakkuudeksi (annosnopeus) 300 milliSv/h. Jos komppanian saapuu alueelle R + 3 h, kuinka suuren annoksen se saa oltuaan alueella a) 4 tuntia b) äärettömän kauan.

Ratkaisu: Asetetaan keskilevyn asteikon arvo 2 tuntia ulkolevyn asteikon arvon 300 milliSv/h kohdalle. Sisälevyn asteikon arvo 3 tuntia asetetaan keskilevyn nuolen ”säteilyn saanti alkaa”-kohdalle. a) Sisälevyn asteikon 7 tunnin kohdalta eli 4 tunnin kuluttua säteilyn saannin alkamisesta siirrytään keskilevyn punaisia apuviivoja seuraten ulkolevyn asteikolle, josta luetaan vastaus: n. 400 milliSv. b) Sisälevyn asteikon äärettömyysmerkin kohdalta siirrytään keskilevyn punaisia apuviivoja seuraten ulkolevyn asteikolle ja luetaan vastaus: n. 2700 milliSv = 2,7 Sv.

Tehtävä: Milloin komppanian on jätettävä em. puolustuskeskus, jos komppanian saama säteilyannos saa olla korkeintaan 500 milliSv?

Ratkaisu: Kun säteilyn asteikot ovat samassa asennossa kuin edellises-sä esimerkissä, etsitään ulkolevyn asteikolta kohta 500 mSv ja seurataan keskilevyn punaisia apuviivoja sisälevyn asteikolle, josta luetaan poistumisajankohdaksi 8 tuntia räjähdyshetkestä eli n. 5 tuntia saapumisesta.
3.4 Määräpituinen oleskeluaika ja määrätyn suuruinen säteilyannos

Tehtävä: Säteilyn voimakkuus sulutettavalla alueella hetkellä R+1 h on 500 milliSv/h. Sulute, jonka rakentamiseen kuluu noin 6 tuntia, on saatava valmiiksi mahdollisimman nopeasti. Pioneerioukkueen saama annos ei kuitenkaan saa olla yli 300 milliSv. Milloin työ aikaisintaan voidaan aloittaa?

Ratkaisu: Keskilevyn asteikon 1 tunti ja ulkolevyn asteikon 500 milliSv/h asettaan kohdakkain. Ulkolevyn asteikon 300 milliSv:n kohdalta siirrytään keskilevyn apuviivoja pitkin sisälevyn reunalle. Tämän pisteen ja nuolen ”säteilyn saanti alkaa” välissä sijoitetaan sisälevynä kiertämällä kuuden tunnin ajanjakso (=tunnit 4 -10). Näin säteilyn saamisen alkamisajankohdaksi määräytyy R + 4 tuntia ja poistumisajankohdaksi R + 10 tuntia. Vastaus: Työ on voidaan aloittaa aikaisintaan R + 4 h.
SANASTO

A-ase (ydinase). Ydinrääjähteiden ja niiden maaliinsaattamisvälvineiden muodos­
tama kokonaisuu.

ABC-aseet. Tavanomaisiin aseisiin verrattuna laaja-alaista tuhoa aiheuttavia aseita.
Näitä ovat ydinaseet (A), biologiset aseet (B) ja kemialliset aseet (C). Monissa
maissa käytetään NBC-lyhennettä.

Absorboitunut annos. Väliaineeseen siirtynyt keskimääräinen energia jaettuna
väliaineen massalla. Yksikkö gray (Gy).

Absorptio. Imeytyminen. Energia-absorptio tarkoittaa energian siirtymistä väliai­
neeseen. Aineabsorptio tarkoittaa aineen imeyttymistä toisen aineen sisään.

Absorboida. Imeä itseensä (sisäänsä).

Absorptionosnopeus. Tiettynä aikavälinä absorboitunut annos jaettuna tällä
aikavälillä (Gy/s).

Adsorboida. Imeä itseensä (pinnalle).

Adsorptio. Ilmio, missä aine kiinnittyy aineen pinnalle ilman kemiallista sitoutu­
mista.

Aerosoli. Kaasun (ilman) ja siinä leijuvien kiinteiden hiukkasten tai nestepisaroiden
muodostama järjestelmä. Tavallisesti aerosoleihin luetaan hiukkaset, jotka ovat
halkaisijaltaan nanometristä satoihin mikrometreihin. Ydinrääjädyksessä tai
ydinturmassa syntyy radioaktiivisia aerosoleja. Hiukkasten koko ja aktiivisuus
vaihtelevat hyvin suuresti.

Aktiivihiihi. Hiili, jolla on erityisen aktiovointiprosessin avulla saatu suuri
huokoisuus.

Aktiivisuus. Ydinmuutosten määrä tiettynä aikavälinä jaettuna tällä aikavälillä.
Yksikkö becquerel (Bq).

Aktiivisuuskate. Aktiivisuus jaettuna tarkasteltavalla pinta-alalla (Bq/m²).

Aktiivisuuskonsentraatio. Konsentraatio. Aktiivisuus jaettuna tarkasteltavalla
tilavuudella (Bq/m³).

Alkahajoaminen. Nuklidin hajoaminen siten, että se lähetttää alfahiukkasen.

Alkeisvaraus. Pienin sähkövaraus. Elektronin sähkövaraus on yksi negatiivinen alkeisvaraus.

Annilaatio. Vrt parinmuodostus

Annos. Sama kuin absoboitunut annos. Annos voi myös tarkoittaa annosekvivalenttia tai efektiivistä annosekvivalenttia.

Annosekvivalentti. Annoisuiru, joka saadaan kertomalla absoboitunut annos laatukertoimella. Yksikkö sievert (Sv).

Annomittari. Sääteilyannosta mitata laite.

Annosnopeus. Sääteilyannos tietynä aikavälinä jaettuna tällä aikavälillä (Gy/s).
Annosnopeusmittari. Annosnopeuden eli säteilyn voimakkuuden mittaamiseen tarkoitettu laite.

Annosraja. Hallinnollinin raja-arvo säteilysuojelun tavoitteiden saavuttamiseksi. Efektiivinen annosekvivalentti on tietyn elimen annosekvivalentti, jota ei saa ylit- tää tietyssä ajassa.

Atomi. Alkuaineen pienin kemiallisesti jakautumaton osa.

Atomipommi (fissio). Ydinräähde, jonka teho perustuu raskaiden atomiytimien halkeamisesta vapautuvaan energiaan.

Auksiini. Eräs kasveissa tavattava kasvuhormoni.

Avolähde. Säteilylähde, jonka radioaktiivinen aine ei ole vaipan suojaama.

Ballistinen suojaus. Suojaus lentävien sirpaleiden tms. iskuvaikutuksilta.

B-ase (biologinen ase). Biologisten taisteluaaineiden ja maalinsaattamisvälineiden muodostama kokonaisuus.

Becquerel (Bq). Aktiivisuuden yksikkö. 1 Bq = yksi ydinmuutos yhdessä sekunnissa.

Beetahajoaminen. Nuklidin muuttuminen naapuri-isobaarikseen siten, että ydin lähetettä beetahiukkasen tai sieppaa elektronin (ks. elektronikaappaus).

Biologinen puoliintumisaika. Aika, jossa aineen tai yhdisteen määrä jossakin elimessä tai elimistössä vähenee puoleen. Biologiset prosessit eivät suinkaan aina ole eksponentiaalisia, joten biologinen puoliintumisaika ja siten myös efektiivinen puoliintumisaika ovat vahvasti yksinkertaistettuja suureita monimutkaisemmista ilmiöistä.

Biosensori. Johonkin biologiseen reaktioon, yleensä entsyymireaktioon, perustuva tunnistusmenetelmä.

Biosynteesi. Tapahtuma soluissa, jolla muodostuu elävien organismien rakennerosina olevia molekyylejä.

Butyylikumi. Synteettinen öljypohjaisesta raaka-aineesta valmistettu rakenteeltaan tiivis kumilaatu.

Bromibutyylikumi. Butyylikumi, jonka perusrakenne sisältää bromia.

C-ase (kemiaallinen ase). Kemiallisten taisteluaineiden ja niiden maaliinsaattamisvälineiden muodostama kokonaisuus.

Comptonin ilmiö. Fotonin elastinen sironta vapaasta elektronista. Osa fotonin energiasta siirtyy elektronille.

Curie (Ci). Aktiivisuuden käytöstä poistuva yksikkö. $1 \text{Ci} = 3.7 \times 10^{10} \text{ Bq}$.

Dekontaminointi. Radioaktiivisen, biologisen tai kemiallisenaatteen poistaminen.

Depositio. Pinnalle, esimerkiksi hengitystehin, kiinnittynyt aine. Depositio voi tarkoittaa myös kiinnittymistapahtumaa.

Derivaatta. Johdos

Desorptio. Aineen irtaaminen imeytysaineen sisältä, esim haihtumalla.

Deuterium. Vedyn isotooppi, jonka ydin koostuu yhdestä protonista ja neutronista. Ydintä sanotaan deuteroniksi.

Diffuusio. Hiukkisten lämpöliikkeestä johtuvaa aineiden itsestään tapahtuvaa sekoittumista. Diffuusio johtaa väliaineessa vallitsevien konsentraatioerojen tasoittumiseen.

Dosimetri. Säteilyannosmittari.

Dosimetria. Oppi annoksen ja annosnopeuden mitaatamisesta.

EDTA. Etyleenidiaminotetraetikkahapon dinatriumsuola.

Efektiivinen puoliintumisaika. Fysikaalisen puoliintumisajan ja biologisen puoliintumisajan yhteisvaikutus.

Elektronivoltti. Säteilyfysiikassa käytetty energian yksikkö. Energia, jonka elektroni saa kulkiessaan yhden voltin potentiaalieron yli. $1 \text{ eV} = 1.6021892 \times 10^{-19}$ joulea.

Emissio. Tapahtuma, jossa aine lähetettää hiukkasen tai fotonin.

Emittoida. Lähetettää säteilyä.

EMP. Sähkömagneettinen pulssi.

Energiansiirtokyky. Ionisoivan hiukkasen välilaineeseen luovuttama energia tietyllä välilmatkalla jaettuna tällä välilmatkalla. Yksikkö keV/m.

Esipuhdistus. Jokaisessa joukossa välittömästi saastumisen tapahduttua tai sitä epäiltäessä aloitettavaa henkilöstön ja materiaalin puhdistustoimintaa, joka saastealueella toimittaessa on usein pakko toistaa.

Fertilli nuklii. Ydin, joka voidaan muuttaa fissiiliksi ytimeksi neutronikaappauksen avulla. Luonnossa on kaksi tällaista ainetta, uraani-238 ja torium-232.

Fissiili ydin. Halkeava ydin.

Fissiotuote. Fissiossa tai sitä seuraavassa hajoamisessa syntynyt nuklii.

Fotoni. Sähkömagneettisen säteilyn ”alkio”, kvantti.
Fotosynteesi. Tapahtuma, jossa vihreiden kasvien lehtivihreässä syntyy auringonvalon vaikutuksesta hiilidioksidista ja vedestä hiilihydraatteja, esim sokereita, seluloosaa jne.

Fotosähköilmio. Valosähköinen ilmiö. Ilmiö, jossa lyhytaikainen valo (fotoni) absorboituu täydellisesti atomiin. Tämän seurauksena atomi lähetää elektronin.

Fuusio. Tapahtuma, jossa kaksi kevyttä ydintä yhtyy. Samalla vapautuu energiayy.

Fysikaalinen puhdistaminen. Saasteen mekaanista puhdistamista erilaisista kohteista, esim pesu ja pyyhkiminen.

Gammasäteily. Ydinmuutoksissa syntyvää sähkömagneettista säteilyä, johon ei liity massaa eikä varausta. Gammasäteily on peräisin ytimien energiatilojen muutoksista.

Geigerputki. Kaasutäyteineen ilmainin, jossa sähkökentän avulla kustakin ionisaatiotapahtumasta kerätään yhtä suuria varaus anodille.

Gray (Gy). Absorboituneen annoksen, kerman ja ominaisenergian yksikkö. 1 Gy = 1 J/kg.

Hajasäteily. Sironnut säteily, vuotosäteily, loissäteily yms.

Hajoaminen (radioaktiivinen). Spontaani ydinmuutos, jossa syntyy hiukkas- tai gammasäteilyä (useimmiten molempia). Röntgensäteilyä syntyy elektronikaapauksessa. Ydin voi myös hajota spontaanin fission kautta.

Hajoamisvakio. Radionuklidin hajoamista kuvaava vakio. Ks. puoliintumisaika.

Herbisidit. Kasvintuhoaineet.

Hermokaasut. Erittäin myrkyllisiä ja nopeasti vaikuttavia taistelukaasuina käytettäviä organofosforiyhydrideitä. Niiden teho perustuu elimistön hermojärjestelmien vaikeaan häiriintymiseen ja lamautumiseen sekä lopulta toimintojen lakkaamiseen.

Hidastin (ydinfysiikassa). Materiaali, joka vähentää neutronien energiayta sironnan avulla.

Hiukkassäteily. Koostuu alfa- tai betahiukkasista, neutronista, elektroneista tai muista ydinhiukkasista.

Hydrolyysi. Kemikaalin hajottaminen veden avulla.
Ilmaisin. Säteilyä, biologisia tai kemiallisia aineita ilmaiseva laite (detektori) tai aine.

Ilmakaasut. Ilmaan levitetystä ilmavirtausten mukana kulkeutuvista taistelukaasuista käytetty nimitys. Myös maastokaasuista haihtuvat höyryt käytävät ilmaakaasujen tavoin. Ilmakaasupilven kaasupitoisuus eli myrkkypitoisuus ilmaaistaan tilavuusprosenttina tai milligrammoina ilmakuutiometriä kohti (mg/m³).

Ilmakehän turbulenssi. Tuulen suunnan ja nopeuden lyhytaikaisia (1 sek - 1 min) vaihteluita. Suorien mittausten puutuessa arvioidaan ilmakehän tasapainotilan avulla.

Ilmaräjähdy. Sellaisessa korkeudessa tapahtuva ydinräjähdy, jossa tulipallo ei kosketa maan tai veden pintaa.

Immunologinen tutkimusmenetelmä. Mikrobin tai toksiinin tunnistaminen vasta-aineen avulla.

Intensiteetti. Voimakkuus.

Ioni. Sähköisesti varautunut atomi tai molekyli.

Ionisaatio. Tapahtuma, jossa neutraali atomi tai molekyli varautuu saadessaan tai menettäessään elektroneja.

Ionisaatiokammio. Kaasutäyteineen ilmaisin, jolla mitataan säteilyn tuottamien ionien määrää.

Ionisoiva säteily. Sähkömagneettinen säteily, jota aiheuttavat väliaineessa ioneja suoraan tai välillisesti.

Isobaari. Eri alkuaineen isotooppia, jolla on sama massaluku kuin tarkasteltavalla nuklidilla.

Jarrutussäteily. Varauksisten hiukkasten hidastuessa (tai kiihtyessä) syntyvää ionisoivaa sähkömagneettista säteilyä.

Joditabletti. Kaliumjodidia sisältävä tabletti (Suomessa 200 mg). Käytetään suojamaan kilpirauhasta radioaktiiviselta jodilta.
Jälkisäteily (laskemassäteily). Ydinräjähdyksen fissiotuotteista sekä räjähdyksen indusoimista muista aineksista lähtevää radioaktiivista, pääosin gamma- ja beetasäteilyä.

Jälleenkäsittely. Hyödyllisten nuklidien talteenotto reaktorissa käytetystä ydinpoltoaineesta.

Kaasuannos. Ilmainee elimistöön pääsyttä taistelukaasun määrää. Annos ilmaistaan milligrammoina ihmisen painokiloa kohti (mg/kg). Kaikille tappavaa annosta merkitään LD, ja joka toisen tappavaa annosta LD₉₀. Mitä pienempiä nämä luvut ovat sitä myrkylisemmästä aineesta on kyse. LD₀ ei ole hengenvaarallinen kenellekään. Taistelukyvyttömyyden aiheuttava annos merkitään puolestaan ID₉₀, joka liitetään edellä esitetyn tapaan numerot 100 tai 50 osoittamaan taistelukyvyttömiän osuutta joukosta.

Kaasupitoisuus. Kaasupitoisuus (C) on kaasun määrä ilmassa milligrammoina kuutiometriä kohti (mg/m³), maastossa grammoina neliömetriä kohti (g/m²) ja iholla milligrammoina neliösenttimetriä kohti (mg/cm²).

Kantama. Varauksisen hiukkasen kulkema (suoraviivainen) matka aineessa ennen kuin se menetää kykyensä tuottaa ionia.

Kemiallinen ase. Katso C-ase.

Kemialliset taisteluaineet. Kiinteitä, nestemäisiä tai kaasumaisia ja myös aerosolimuodossa esiintyviä myrkyllisiä yhdisteitä, joita käytetään sotatoimissa aiheuttamaan kuolemia, vammoja tai ohimeneviä häiriöitä ihmisten, eläinten tai kasvien elintoininnoissa.

Kerma. Ionisoivan säteilyn välillisesti tuottamien varauksisten hiukkasten alkuperäisten liike-energioiden summa jaettuna tarkasteltavan kohteen massalla. Yksiikkö gray (Gy).
Kermanopeus. Kerma tiettynä aikavälinä jaettuna tällä aikavälillä (Gy/s).

Kerkeä neutroni. Fissiossa viivästymättä syntyvä neutroni.

Kerkeästi kriittinen. Kriittinen pelkästään kerkeiden neutronien takia.

Ketjureaktio. Fissioreaktioiden ketju, jossa ytimien halkeamisen aiheuttavat edellisen neutronisukupolven neutronit.

Kilotonni (kt). Ydinräjähdyksessä vapautuvan energian kuvaamiseen käytettävä mittayksikkö, joka tarkoittaa 1000 TNT-tonnin vastaavaa räjähdyssvoimaa.

Koinsidensi. Samanaikainen tapahtuma, esimerkiksi pulssien rekisteröinti kahdessa tai useammassa ilmaisumessa yhtä aikaa tai tietyllä lyhyellä aikavälillä.

Kollektiivinen annosekvaliensi. Säteilylle altistuneen väestön yhteisannos. Yksikkö sievert (Sv), jota usein tässä hytetydessä sanotaan mansievertiksi (man Sv).

Kompleksoiva reagenssi. Kemiallinen yhdiste, joka sitoo metalli-ioneja vesiliuoksesta.

Kontaminaatio. Pinnalla tai tilavuudessa oleva radioaktiivinen, biologinen tai kemiallinen saaste.

Kriittinen. Täyttää ehdon, että ketjureaktiok efektiivinen kasvutekijä, neutronien monistuskerroin, on yksi. Neutronien tuotto ja hävikki ovat yhtä suuret. Säteilysuojelussa sana kriittinen voi viittata myös aivan toisaalle, esimerkiksi tiettyyn ihmisryhmään, elimeen tai polkuun.

Kriittinen massa. Ketjureaktiok ylläpitämiseen tarvittava määrä halkeamisj selpoista ainetta.

Kuivalaskeuma. Hiukkasten laskeutuminen ja kiinnittyminen pinnoille, kun mekanismi on muu kuin sade, esimerkiksi diffuusio, painovoima tai törmääminen (impaktio).

Kvantti. Ks. fotoni.

Kynnys. Raja, jonka alapuolella jotakin tiettyä ilmiötä ei esiinny.

Kynnysarvo. Milligrammoina ilmakuutiometriä kohti ilmaistu taistelukaasu-pitoisuus (mg/m³), joka minuutin kuluessa juuri ja juuri pystyy aiheuttamaan myrkytysoireita.
Kyynelkaasut (CN, CS, CR). Silmiä, hengitysteitä ja ihoa ärsyttäviä ja siten tilapäistä toimintakyvyttömyyttä aiheuttavia kemiallisia, usein taistelukaasuiksi luokiteltuja yhdisteitä.

Labiili. Epästabiili, epävakaa, ilmanvirtauksissa voimakas turbulenssi.

Laskeuma. Maahan (ja veteen) laskeutuneet (radioaktiiviset) aineet. Laskeuma voi myös tarkoittaa laskeutumistapahtumaa.

Lisäyskerroin. Suojauslaskuissa käytettävä kerroin, jolla otetaan huomioon sironneen säteilyn osuu suojuksen läpi pääsevän säteilyn annosnopeudesta.

Luonnonsäteily. Luonnnon radioaktiivisista aineista peräisin oleva säteily ja kosminen säteily.

Lähdetermi. Vakavassa reaktorionnettomuudessa ydinvoimalaitoksen suojarakennukseen tai sen ympäristöön vapautuvat radioaktiiviset aineet.

Maanollapiste. Ydinräljähdyspiste projisioituna kohtisuoraan maan pinnalle.

Maastokontaminaatio. Maastosaaste, muodostuu maanpinnalle ja maaston peitteisiin laskeutuneesta taisteluaaineesta.

Maastokaasut. Maastoon levitetyjä yleensä tavallisina tai sitkostettuina nesteinä esiintyviä taistelukaasuja, joiden pysyvyys vaihtelee tunneista viikkoihin, jopa muutamiiin kuukausiin lähinnä sääashteista riippuen. Saastumisaste ilmaistaan grammoina kaasuainetta neliömetriä kohti (g/m²) tai kilogrammoina hehtaria kohti (kg/ha). Iholla vaikuttava taistelukaasun määrä ilmaistaan milligrammoina neliösenttimetriä kohti (mg/cm²).

Megatonni (Mt). Ydinräljähdysessä vapautuvan energian kuvaamiseen käytettävä mittayksikkö, joka tarkoittaa 1 000 000 TNT-tonnin vastaavaa räljähdysvoimaa.

Metallipolttoistaeluaineet. Polttotaisteluaineet, jotka sisältävät esim. magnesiumia, alumiinia tai alkali- ja maa-alkalimetalleja.

Myöhäisvaikutukset. Säteilyn stokastiset terveyshaitat, jotka ilmenevät vuosia altistuksen jälkeen.

Negatroni. Negatiivisvarauslokisteksi tulosta käytetty nimitys positonin vastakohtana.

Neutriino. Varaukseton ja massaton tai hyvin pienimassainen alkeishiuukkanen. Syntyy mm. beetahajoamisessa ja vie mukanaan suuren osan hajoamisen liittyvästä kokonaisenergiasta. Vuorovaikutukset aineen kanssa vähäisää.

Neutroni. Varaukseton alkeishiuukkanen. Massa 1,67495 x 10^{-27} kg.

Neutronipommi. Ydinrääjähde, jossa paine- ja polttovaikutus on supistettu mahdollisimman pieneksi ja täten saatavaksi kasvatettua neutronisäteilyn määrää.

Nopea neutroni. Neutroni, jonka liike-energia ylittää tietyn rajan, reaktorifysiikassa tavallisesti n. 0,1 MeV.

Nukleinhapporakenteen tunnistus. Mikrobiin tunnistus perinnöllisen aineksen rakenteen perusteella.

Nuklidit. Atomi, jota luonnehtivat ytimen koostumus ja energiatila.

Ominaisaktiivistus. Nukloidin tai sen yhdisteen aktiivistus jaettuna tarkasteltavalla massalla (Bq/kg).

Parinmuodostus. Tapauksesta, jossa sähkömagneettisesta säteilystä syntyy materiaa, negatroni ja positroni. Annihilaatiota vastakohta.
pH. Liuoksen happamuutta tai emäksisyttä kuvavaa luku (0-14), pH < 7 = hap-pan, pH > 7 = emäksinen.

Pintaräjähdyys. Maan tai veden pinnassa tahi lähellä niitä tapahtuva ydinräjähdyys.

Polttoase. Asejärjestelmä, jonka muodostavat polttotaisteluaine, sen levittämiseen ja sytyttämiseen kohdealueella tarvittavat ampumatarvikkeet (vast) sekä maaliintoimittamisjärjestelmä.

Polttotaluaineet. Helposti syttyviä, yleensä korkean palamislämpötilan omavia aineita, joita käytetään elävän voiman tuhoamiseen, materiaalin ja rakenteiden vaurioittamiseen sekä maaston sytyttämiseen. Polttotaluaineita voidaan käyttää myös taistelukentän valaisuun.

Polyamidi/polykarbonaatti. Synteettisesti valmistettuja muovilaatuja.

Poolinen yhdiste. Molekyyli, jossa on löydettävissä sähkövarauksen jakaantumista eli polarisaatiota. Kemiallinen yhdiste, jossa molekyyli on dipoli. Pooliset yhdisteet ovat vesi vesihakuisia.

Pooliton yhdiste. Kemiallinen yhdiste, jonka molekyyllillä ei ole dipoliluonnetta. Poolittomat yhdisteet ovat öljyhakuisia.

Primääripilvi. Muodostuu ammukseen räjähdyksessä ilmaan jäävästä kaasualersoli-seoksesta ("ensiopilvi").

Primäärisäteily. Välittömästi säteilylähteestä tuleva ionisoina säteily.

Protoni. Alkeishiuukkanen, jolla on positiivinen varaus. Vetyatomin ydin. Varaus 1.60219 × 10⁻¹⁹ C, massa 1.67265 × 10⁻²³ kg.

Psykokaasut (BZ, LSD). Hermoston toimintoihin häiritsevästi vaikuttavia ja tilapäistä toimintakyvyttömyyttä aiheuttavia kemiallisia yhdisteitä, joita käytetään taistelukasuina.

Puhdistustoiminta. Toiminta, jonka päämäärynä on säilyttää tai palauttaa saastuneen henkilöstön toimintakyky sekä kaluston ja materiaalin käyttökelpoisuus.

Puoliarvoteileys. Kokonaisabsorptiopikin jakaumakäyrässä niiden kahden pisten välinen etäisys, joiden organaatat ovat puolelta huipun organaatasta. Ilmoitetaan usein energian yksiköissä (keV).

Puoliintumisaika. Aika, jossa radionuklidin aktiivisuus laskee puoleen.
Puoliintumispaksuus. Väliainekerros, joka säteilykeilassa pienentää tietyn säteilyn liittyvän suureen, esimerkiksi annosnopeuden, arvon puoleen.

Pyroforiset polttotaisteluaineet. Ilman, hapen tai veden kanssa kosketukseen joutuessaan syttyviä aineita.

Pyrogeelit. Pääasiassa palopommeissa käytettyjä öljy-metallipohjaisia polttotaisteluaineita.

Pyrotekniset polttotaisteluaineet. Itsestään palavia hapettimen sisältäviä aineita.

Rad. Absorboituneen annoksen yksikkö (käytöstä poistuva yksikkö). 1 rad = 0,01 Gy.

Radioaktiivinen aine. Aine, jossa ilmenee radioaktiivisuus (esimerkiksi säteily ei voi olla radioaktiivista).

Radioaktiivinen pilvi. Ydinräjähdyksen muodostama räjähdyspilvi, joka sisältää radioaktiivisia räjähdystuootteita sekä pilven imeytynäitä maaperän aineksia. Pilvi voi kohota kilometrien korkuiseni.

Radioaktiivisuus. Eräiden nuklidien ominaisuus lähettää ionisoivaa säteilyä ulkoisista vaikutuksista riippumatta.

Radionuklidi. Epästiabili nuklidi, joka lähettää ionisoivaa säteilyä.

Resoluutio. Erotuskyky. Energiaerotuskyky ilmoitetaan yleensä puoliarvoleveytenä (keV) tai puoliarvoleveyden suhteen piikin energiaan (%). Ajan erotuskyky on lyhyin kahden perättäisen signaalin väliaika, joka on riittävä signaalien rekisteröimiseksi erikseen.
Resonanssienergia. Energia, jolla törmäävää hiukkannan suurella todennäköisyydellä virittää ytimen tiettyyn energiatilaan. Vuorovaikutuksen vaikutusala on hyvin suuri tällä energialla.

Retentio. Radioaktiivisen aineen pidätyminen kehossa. Retentioon vaikuttavat aineen kemialliset ja aineenvaihdunnalliset ominaisuudet.

Riski. Kuoleman, haitan tai vaurion todennäköisyys. Toisinaan riski kuvataan tietyn haitan ja sen todennäköisyyden tulona.

Röntgen (R). Säteilyksen käytöstä poistuva yksikkö. 1 R = 2,58 x 10⁻⁴ C/kg.

Röntgensäteily. Gammasäteilyn kaltaista sähkömagneettista energiaa. Röntgensäteily voidaan jakaa syntytapansa perusteella jarrutussäteilyyn ja karakteristiseen röntgensäteilyyn.

Saaste. Radioaktiivisen laskeuman sekä kemiallisten tai biologisten taisteluaineiden maastoon ja vesistöön aiheuttama vaarallinen alue. Radioaktiivisten aineiden ja en taisteluaineiden esiintyessä erilaisissa kohteissa kuten iholla ja vaatteissa sekä verusteissa ja kalustossa on kyseessä myös saaste (aine).

Sadehuuhtelu. Hiukkasten kiinnittyminen liikkuvina vesipisaroihin.

Sadesidonta. Hiukkasten sitoutuminen vesipisaroihin niiden muodostumisvaiheessa.

Sekundääripilvi. Syntyvä maastoon laskeutuneen aineen, maastokontaminaatio, höyryysteysä.

Sekundäärisäteily. Primäärisäteilyn ja aineen vuorovaikutuksissa syntyvä ionisoiva säteily.

Sidosenergia. Nettoenergia, joka tarvitaan poistamaan hiukkannen jostakin järjestelmästä, esimerkiksi elektronin atomista tai neutroni ytimestä. (Kokonais)sidosenergia on energia, joka tarvitaan hajottamaan hiukkasjärjestelmä. Kemiallisen sidoksen hajottamiseen tarvittava energia.

Sievert (Sv). Annosekvalentti yksikkö.

Sirona. Tapahtuma, jossa hiukkasen suunta ja energia muuttuvat sen törmätessä toiseen hiukkaseen.

Sisäinen konversio. Tapahtuma, jossa ytimen hajotessa syntyvä gammakvantti luovuttaa energiaa elektroniverhon jollekin elektronille siten, että elektroni irtautuu atomista.
Sisäinen säteily. Kehossa olevien radioaktiivisten aineiden lähettämä säteily.

Spektri. Aineen lähetätään tai itseensä imemän sähkömagneettisen säteilyn intensiteetti aallon pituuden tai taajuuden funktiona.

Spektrometria. Spektrin hyväksikäyttöön perustuva mittaus.

Spontaani fissio. Fissio, joka tapahtuu itsestään ilman ulkoisten hiukkasten (tai fotonien) vaikutusta.

Stabiili. Vakaa, ilmanvirtausissa heikko turbulenssi.

Stabiilius/stabiliusluokka. Ilmakehän tasapainotila, turulenttisuus.

Suojauskerroin. Ilmaisee erilaisten suojapaikkojen, linnoitteiden tai -laitteiden suojauskyvyn säteilyä vastaan. Se on ulkona tasaisella laajalla kentällä l m:n korkeudella maanpinnalta mitatun säteilyvoimakkuuden suhde suojatilassa vallitsevaan säteilynvoimakkuuteen. Esimerkiksi suojauskerroin 100 tarkoittaa sitä, että suojapakassa vallitseva säteilynvoimakkuus on 1/100 ulkona mitatusta arvosta.

Suure. Ilmiön, esineen tai aineen fysikaalisesti mitattavissa oleva ominaisuus.

Syvyysrähdyys. Maan tai veden pinnan alla syvällä tapahtuva ydinrähdyys.

Syövyttävät kaasut. Tunkeutumiskykyisät ja elävää kudosta syövyttävät, rakkuloita ja vaikeasti paranevia haavoja aiheuttavia kemiallisia yhdisteitä. Johtavat toimintakyvyttömyyteen ja suurina annoksina hengenvaaralliseen yleismyrkytykseen.

Sähkömagneettinen säteily. Aaltoliikettä, joka muodostuu ajan mukana muuttuvista sähkö- ja magneettikentistä. Sähkömagneettinen säteily etenee tyhjössä valon nopeudella c ja vähäineessä nopeudella v = c/n, jossa n on vähäineen taitekerroin. Sähkömagneettinen säteily voi olla ionisoivaa tai ionisoimatonta sääteilyä. Fs. fotoni.

Säteilyaltistus. Kehon tai sen osan alttiina olo tai alttiiksi joutuminen säteilylle.

Säteilyannos. Sama kuin annos.

Säteilyenergia. Säteilynä emittoitunut, siirtynyt tai vastaanotettu energia.

Säteilylähde. Lähde. Radioaktiivinen aine tai ionisoivaa sääteilyä synnyttävä laite.

Säteilysairaus. Suuren säteilyannoksen (yli 1 Gy) aiheuttama sairaustila, johon voi liittyä kuolemanvaara. Oireet ja taudin ennuste riippuvat annoksen suuruudesta.

Säteilysuojaus. Toimet säteilyn heikentämiseksi säteilysuojan avulla.

Säteilysuojelu. Toimet säteilyn haattavaikutusten poistamiseksi tai minimoiniseksi.

Säteilyturvallisuus. Säteilysuojelun tavoite.

Säteilytys. Fotonien välillisesti tuottama varaus ilmassa jaettuna tarkasteltavan ilma-alkion massalla (C/kg).

Säteilytysnopeus. Säteilytys tiettynä aikavälinä jaettuna tällä aikavälillä (A/kg).

Säteilyvalvonta. Toimet mahdollisen säteilyvaaran toteamiseksi.

Taustasäteily. Muu säteily kuin se, jota on tarkoitus havainnoida. Ks. luonnon-säteily.

Tensidi. Veden pinta-aktiivisuutta alentava orgaaninen kemikaali.

Terminen fissio. Termisten neutronien aiheuttama fissio.

Terminen neutroni. Hidas neutroni, jonka energia noudattaa väliaineen lämpöliikkeen energijaakaumaa.

Toimenpideraja. Kynnysarvo, jonka ylittyminen aiheuttaa säteilysuojelu-toimenpideitä.

Transuraanit. Alkuaaineet, joiden järjestysluku on suurempi kuin uraanin järjestysluku 92. Transuraanit kuuluvat aktinideihin.

Tritium. Vedyn isotooppi, jonka ydin koostuu protonista ja kahdesta neutronista. Ydintä sanotaan tritoniaksi.
Tuikelaskenta. Mittausmenetelmä, jossa käytetään hyväksi ilmansainineen kykyä muuttaa ionisoivan sateilyn energia valoksi. Tavallisim ilmason on tallimilla aktivoitu natriumjodidikide NaI(Tl). Tukeaaine voi myös olla orgaaninen yhdiste, joka on läpinäkyvässä muovissa tai orgaanisessa liuoksessa.

Tulipallo. Ydinrähdyksessä syntyy pallomainen, hehkuvan ilman ja aseen jäännösten muodostama massa, jolla on räjähdysoimakkuudesta riippuva maksimi-kokonsa.

Turbulenssi. Pyörteisyys, tuulen suunnan ja nopeuden lyhytaikaiset vaihtelut.

Turvallisuuslupa (ydinfysiikka). Lupa, joka oikeuttaa valmistamaan, käyttämään, kuljettaamaan, tuomaan, viemään, pitämään hallussa ja varastoimaan radioaktiivisia aineita sekä käymään niillä kauppa, tai käyttämään sateilyä aiheuttavia laitteita.

Tytärnuklidi. Radionuklidin hajoamisen tuloksena syntyy uusi ydin.

Ulkinen sateily. Kehoon sen ulkopuolelta kohdistuva sateily.

Umpilähde. Sateilylähde, joka on suljettu sellaiseen suojavaippaan, että radioaktiivinen aine ei voi levitä ympäristöön.

Vaimennuskerroin (ydinfysiikka). Suojaavan aineen pinnalle saapuvan ja sen läpi pässseen sateilyn voimakkuuden suhde.

Varaukseton hiukkanen. Fotoni tai muu hiukkanen, jolla ei ole sähkövarausta.

Varhaislaskeuma. Maanpinnassa tai sen tuntumassa tapahtuneesta ydinrähdyksestä aiheutuva laskeuma. Siinä ilmehähän nousseet ja aktivoituneet hiukkaset putoavat maanolapatesteestä alkaen tuulen alapuolelle välittömästi räjähdyksestä alkaen ensimmäisen vuorokauden aikana.

Varsinainen puhdistus. Puhtaalla alueella tapahtuvaa henkilöstön ja materiaalin perusteellinen puhdistaminen.

Vasta-aine. Elimistössä mikrobitaudin tai rokotuksen vaikutuksesta syntyvä aine, joka kiinnittyy kyseiseen mikrobiin ja yleensä tuhoa sen.

Verrannollisuuslaskuri. Kaasutäytteenen ilmaisin, jossa sähkökentän avulla kerrättävä vara on verrannollinen alkuperäisten ionisaatiotapahtumien määärään.

Viritys. Tapahtuma, jossa energiaa siirryy atomiin tai molekyyliin aiheuttamatta ionisaatiota.

Vuorovaikutus (ydinfysiikka). Säteilyn ja aineen välinen (yksittäinen) tapahtuma.

Väkeväontti. Fysiikassa prosessi, jossa kasvatetaan alkuaineen jonkin isotoopin osuutta aineessa. Kemiassa jonkin aineen pitoisuuden kasvattamista liuosessa tai seoksessa.

Välivarastointti. Ydinjätteiden varastointi valvottuissa tilassa ennen myöhempää käsittelyä tai loppusijoitusta.

Ydin. Atomin ”sydän”, joka koostuu protoneista ja neutroneista.

Ydinaine. Ydinenergian aikaansaamiseen soveltuva erityinen halkeamiskelpoinen aine ja lähtöaine, kuten uraani, plutonium ja torium.

Ydinlaitos. Ydinvoimalaitos, tutkimus- tai koereaktori tai niiden polttoaine- tai ydinhuoltoon tarkoitettu radioaktiivisia aineita käsittelevä laitos.

Ydinmateriaali. Ydinaineet ja niihin liittyvät aineet, laitteet, laitteistot, tietoaineistot ja sopimukset.
Ydinmuutos. Ytimen muuttuminen toiseksi ytimeksi. Ks. hajoaminen.

Ydinreaktori. Laitteisto, jossa tapahtuu hallittu ketjureaktio.

Ydinturvallisuus. Ydinlaitosten säteilyturvallisuus.

Ydinvoimalaitos. Ydinvoimala. Sähkö- tai lämpöenergian tuotantoon tarkoitettu ydinreaktori (tai useampia samalla paikalla) mukaan luettuna energiantuotannon ja käyttöturvallisuuden edellyttämät rakenteet ja järjestelmät.

Yleismyrkylliset kaasut. Solujen toimintoja vaurioittavia ja vaikeissa myrkytystapauksissa nopeaan kuolemaan johtavia kemiallisia yhdisteitä, joita voidaan käyttää taistelukaasuina.

Ylikriittinen. Neutronien tuotto ylittää niiden hävikin.

KIRJALLISUUSLUETTELO

1. SÄTEILY JA YDINASEET

Ydinaseet.

Ydinrääjähdysken vaikutukset.
Jcrma Virtamo. Maanpuolustuksen tieteellinen neuvottelukunta. Raporttisarja 1/ A/76.

The Effects of Nuclear Weapons.
Samuel Glasstone and Philip J Dolan.

Charles S Grace.

Säteily ja turvallisuus.
Harri Toivonen, Tapio Rytömaa ja Antti Vuorinen.

Toiminta ydinrääjähdystilanteessa.
Sisäasiainministeriön ohje A:48.

Suojelun Käsikirja.

Suojeluopas.
Gummerus Kirjapaino. Jyväskylä 1990

2. BIOLOGISET TAISTELUAINEEET JA SUOJELULÄÄKINTÄ

Biological Warfare Agents.
B Rybeck and B Gripstad.
3. BIOLOGISET JA KEMIALLISET TAISTELUAIINEET

Lehrbuch der Militärchemie: Band 1: Entwicklung der chemischen Kampfstoffe.
Franke, Siegfried et.al.
Militärverlag der Deutschen Demokratischen Republik.
Berlin 1977.

Franke, Siegfried et.al.
Militärverlag der Deutschen Demokratischen Republik.
Berlin 1977.

FOA orienterar om C-stridsmedel, nummer 13.
Birger Gripstad et.al.

America the vulnerable: the threat of chemical and biological warfare.

Military chemical and biological agents: Chemical and toxicological properties.

Kemiska stridsmedel.
Tore Wingstedt et.al.
Skyddsreglemente för försvarsmakten Stab.
M7747-710031

Chemical Warfare Agents
Satu M. Somani

A FOA Briefing Book on Chemical Weapons, Threat, Effects and Protection.

4. POLITTOASEET JA -TAISTELUAINEET

Brandwaffen.
Ministerrat der Deutschen Demokratischen Republik.
Ministerium fur Nationale Verteidigung.
A 053/1/003. 1988.

Flame Field Expedients.
Headquarters, Department of the Army Washington D.C. 1990

ABC- ja polttoase tänään. Suojelun kuusi vuosikymmentä.
Suojelukoilun Perinneyhdistys ry.

5. TAISTELUAINEIDEN LEVIÄMINEN

Handbook on Atmospheric Diffusion.

Atmospheric Diffusion.
F. Pasquill and F. B. Smith.
Ellis Horwood Limited Publishers- Chichester, John Wiley & Sons.
6. **YKSIŁÖN SUOJA**

Worldwide NBC Mask Handbook Comp. by Nasney Rundi Brletich, Mary Frances Tracy and Thomas R. Dashiell.
CBIAC Edgewood, MD 1992

Ed. by Terry J. Gander.